An open API service indexing awesome lists of open source software.

https://github.com/tdebatty/java-graphs

Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...
https://github.com/tdebatty/java-graphs

Last synced: 9 months ago
JSON representation

Algorithms that build k-nearest neighbors graph (k-nn graph): Brute-force, NN-Descent,...

Awesome Lists containing this project

README

          

# java-graphs

[![Maven Central](https://maven-badges.herokuapp.com/maven-central/info.debatty/java-graphs/badge.svg)](https://maven-badges.herokuapp.com/maven-central/info.debatty/java-graphs) [![Build Status](https://travis-ci.org/tdebatty/java-graphs.svg?branch=master)](https://travis-ci.org/tdebatty/java-graphs) [![Coverage Status](https://coveralls.io/repos/tdebatty/java-graphs/badge.svg?branch=master&service=github)](https://coveralls.io/github/tdebatty/java-graphs?branch=master) [![Javadocs](http://www.javadoc.io/badge/info.debatty/java-graphs.svg)](http://www.javadoc.io/doc/info.debatty/java-graphs)

Java implementation of various algorithms that build and process k-nearest neighbors graph (k-nn graph).

Graph building algorithms:
* (Multi-threaded) Brute-force: works with any similarity measure;
* (Multi-threaded) NN-Descent: works with any similarity measure;
* Online graph building, as published in ["Fast Online k-nn Graph Building"](http://arxiv.org/abs/1602.06819);
* NNCTPH, as published in ["Building k-nn graphs from large text data"](http://dx.doi.org/10.1109/BigData.2014.7004276), for text datasets;

Implemented processing algorithms:
* Dijkstra algorithm to compute the shortest path between two nodes;
* Improved Graph based Nearest Neighbor Search (iGNNS) algorithm, as published in ["Fast Online k-nn Graph Building"](http://arxiv.org/abs/1602.06819);
* Pruning (remove all edges for which the similarity is less than a threshold);
* Tarjan's algorithm to compute strongly connected subgraphs (where every node is reachable from every other node);
* Weakly connected components.

For the complete list, check the [documentation](http://www.javadoc.io/doc/info.debatty/java-graphs) or the [examples](https://github.com/tdebatty/java-graphs/tree/master/src/main/java/info/debatty/java/graphs/examples).

## Installation

Using maven:
```

info.debatty
java-graphs
RELEASE

```

Or from the [releases page](https://github.com/tdebatty/java-graphs/releases).

## Quick start

Most of the time, all you have to do is:

1. Create the nodes
2. Choose and configure the graph builder (mainly the similarity to use)
3. Compute the graph
4. Process the graph...

```java
import info.debatty.java.graphs.*;
import info.debatty.java.graphs.build.NNDescent;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Random;

public class NNDescentExample {

public static void main(String[] args) {
Random r = new Random();
int count = 1000;
int k = 10;

// Create the nodes
ArrayList nodes = new ArrayList(count);
for (int i = 0; i < count; i++) {
// The value of our nodes will be an int
nodes.add(r.nextInt(10 * count));
}

// Instantiate and configure the build algorithm
NNDescent builder = new NNDescent();
builder.setK(k);

// early termination coefficient
builder.setDelta(0.1);

// sampling coefficient
builder.setRho(0.2);

builder.setMaxIterations(10);

builder.setSimilarity(new SimilarityInterface() {

@Override
public double similarity(Integer v1, Integer v2) {
return 1.0 / (1.0 + Math.abs(v1 - v2));
}
});

// Optionnallly, define a callback to get some feedback...
builder.setCallback(new CallbackInterface() {

@Override
public void call(HashMap data) {
System.out.println(data);
}
});

// Run the algorithm and get computed graph
Graph graph = builder.computeGraph(nodes);

// Display neighborlists
for (Integer n : nodes) {
NeighborList nl = graph.getNeighbors(n);
System.out.print(n);
System.out.println(nl);
}

// Optionnally, we can test the builder
// This will compute the approximate graph, and then the exact graph
// and compare results...
builder.test(nodes);

// Analyze the graph:
// Count number of connected components
System.out.println(graph.connectedComponents().size());

// Search a query (fast approximative algorithm)
System.out.println(graph.fastSearch(r.nextInt(10 * count), 1));

// Count number of strongly connected components
System.out.println(graph.stronglyConnectedComponents().size());

// Now we can add a node to the graph (using a fast approximate algorithm)
graph.fastAdd(r.nextInt(10 * count));
}
}
```

This will produce something like:

```
...
{computed_similarities=58141, computed_similarities_ratio=0.1163983983983984, c=4426, iterations=5}
{computed_similarities=69126, computed_similarities_ratio=0.1383903903903904, c=3962, iterations=6}
{computed_similarities=80369, computed_similarities_ratio=0.1608988988988989, c=3575, iterations=7}
{computed_similarities=91560, computed_similarities_ratio=0.1833033033033033, c=2777, iterations=8}
{computed_similarities=102698, computed_similarities_ratio=0.2056016016016016, c=2074, iterations=9}
{computed_similarities=114014, computed_similarities_ratio=0.22825625625625626, c=1317, iterations=10}
Theoretical speedup: 1.0
Computed similarities: 114014
Speedup ratio: 4.381040924798709
Correct edges: 8220 (82.19999999999999%)
Quality-equivalent speedup: 3.6012156401845385
14
[(6181,0.06666666666666667)]
26

```

Check the [documentation](http://www.javadoc.io/doc/info.debatty/java-graphs) or the [examples](https://github.com/tdebatty/java-graphs/tree/master/src/main/java/info/debatty/java/graphs/examples) for other building and processing possibilities...