Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tencent-ailab/mdm

MDM
https://github.com/tencent-ailab/mdm

Last synced: 2 days ago
JSON representation

MDM

Awesome Lists containing this project

README

        

# MDM: Molecular Diffusion Model for 3D Molecule Generation

[[Paper](https://arxiv.org/abs/2209.05710)]

## 📢 News

- If you are interested in generating molecules based on the protein pocket structure, please refer to our new paper ['PMDM'](https://github.com/Layne-Huang/PMDM) which is recently accepted by **Nature Communications** !!

## Dependencies

- RDKit
- PyTorch
- Scipy
- torch-scatter
- torch-geometric

You can also clone our environment file.

```bash
# Clone the environment
conda env create -f MDM.yml
# Activate the environment
conda activate MDM
```

## Data preparation

### QM9 dataset

Download the dataset and split it.

```bash
cd ./qm9/data/prepare/
python ./qm9/data/prepare/download.py
```

You can also download the data from https://drive.google.com/file/d/1JZ_Z5bjS0RsX_BRWtrplMN9vZpL78-T7/view?usp=drive_link and put it under data/QM9/qm9/raw.

### Geom dataset

1. Download the file at https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0 (Warning: 50gb):
`wget https://dataverse.harvard.edu/api/access/datafile/4360331`

2. Untar it and move it to data/geom/
`tar -xzvf 4360331`
3. `pip install msgpack`
4. `python3 build_geom_dataset.py --conformations 1`

## Training

### QM9 dataset

```bash
python train.py --config './configs/qm9_full_epoch.yml'
```

### Geom dataset

```bash
python train.py --config './configs/geom_full.yml'
```

## Sampling and evaluation

```bash
python test_eval.py --ckpt --sampling_type generalized --w_global_pos 1 -- w_global_node 1 --w_local_pos 4 --w_local_node 5
```

## Conditional training and sampling

### Train a conditional MDM for desired properties
```bash
python train_qm9_condition.py --config './configs/qm9_full_epoch.yml' --context {property name} --config_name {config_name}
```
The property name includes homo | lumo | alpha | gap | mu | Cv. For example, you could set --context alpha to train MDM conditioned on alpha.
MDM also supports multiple properties conditioned generation. For example, you could set --context alpha gap to train MDM conditioned on alpha and gap.

### Sampling
```bash
python eval_qm9_condition_quality.py --ckpt {saved_chekpoint} --num_samples {num_samples}
```
You should use the saved checkpoint of train_qm9_condition.py as {saved_checkpoint}

### Sampling for evaluation
#### Train a specific classifier
If you would like to train the classifier by yourself
```bash
cd qm9/property_prediction
```
```bash
python main_qm9_prop.py --num_workers 2 --lr 5e-4 --property alpha --exp_name exp_class_alpha --model_name egnn
```
#### Sampling and calculating the MAE loss
```bash
python eval_qm9_condition.py --ckpt {saved_chekpoint} --classifiers_path {saved_cls_checkpoint}
```
You should use the saved checkpoint of train_qm9_condition.py as {saved_checkpoint} and the saved checkpoint of main_qm9_prop.py as {saved_cls_checkpoint}

## Citation

```
@article{huang2022mdm,
title={MDM: Molecular Diffusion Model for 3D Molecule Generation},
author={Huang, Lei and Zhang, Hengtong and Xu, Tingyang and Wong, Ka-Chun},
journal={arXiv preprint arXiv:2209.05710},
year={2022}
}
```