An open API service indexing awesome lists of open source software.

https://github.com/tensorboy/hawkeye

Prompt Free, Soul Driven AI Assistant
https://github.com/tensorboy/hawkeye

ai-assistant ai-for-everyone prompt-free soul-driven

Last synced: 11 days ago
JSON representation

Prompt Free, Soul Driven AI Assistant

Awesome Lists containing this project

README

          

Hawkeye Logo

# Hawkeye

### ๐Ÿฆ… The First Proactive AI Assistant for Desktop

**AI that enhances your story. Watch keenly. Act thoughtfully. 10x your productivity.**

โŒ˜ + โ‡ง + H to observe your screen instantly

[![GitHub Stars](https://img.shields.io/github/stars/tensorboy/hawkeye?style=for-the-badge&logo=github&color=yellow)](https://github.com/tensorboy/hawkeye)
[![License](https://img.shields.io/github/license/tensorboy/hawkeye?style=for-the-badge&color=blue)](LICENSE)
[![GitHub Release](https://img.shields.io/github/v/release/tensorboy/hawkeye?style=for-the-badge&color=green)](https://github.com/tensorboy/hawkeye/releases)

[๐ŸŒ Website](https://hawkiyi.com) ยท [๐Ÿ“– Documentation](https://hawkiyi.com/docs) ยท [๐Ÿ› Report Bug](https://github.com/tensorboy/hawkeye/issues) ยท [๐Ÿ’ก Request Feature](https://github.com/tensorboy/hawkeye/issues)


![macOS](https://img.shields.io/badge/macOS-000000?style=flat&logo=apple&logoColor=white)
![Windows](https://img.shields.io/badge/Windows-0078D6?style=flat&logo=windows&logoColor=white)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=flat&logo=linux&logoColor=black)


---

## ๐ŸŽฏ What is Hawkeye?

> **Traditional AI waits for your commands. Hawkeye watches and helps proactively.**

Hawkeye is an **AI-powered desktop assistant** that observes your work environmentโ€”screen, clipboard, filesโ€”and proactively offers intelligent suggestions. No prompts needed.

The AI behind Hawkeye is designed to **enhance your own story** โ€” turning your screen time into meaningful personal growth by automatically mapping your goals, habits, and progress into a living **Life Tree**.

| Feature | Copilot / Cursor / Claude Code | **Hawkeye** |
|---------|-------------------------------|-------------|
| **Mode** | Reactive (you ask) | **Proactive** (it watches) |
| **Scope** | Code only | Everything: coding, browsing, writing |
| **Privacy** | Cloud-based | **Local-first**, your data stays local |
| **Control** | AI executes | **You decide** what to execute |


## โœจ Key Features

### ๐Ÿ” Zero-Prompt Intelligence
- Automatically understands your context
- No need to explain what you're doing
- Suggests actions before you ask

### ๐Ÿ  Privacy-First Architecture
- All perception runs **100% locally**
- Data never leaves your device
- Works offline with local LLMs

### ๐ŸŽฏ Smart Task Tracking
- Identifies your main task goal
- Generates actionable next steps
- Learns from your workflow

### ๐Ÿ”— Multi-Platform Sync
- Desktop โ†” Browser seamless sync
- VS Code extension integration
- Cross-app workflow automation

### ๐ŸŒณ Life Tree โ€” AI Enhances Your Story
- Automatically maps your activities into life stages, goals, and tasks
- Proposes micro-experiments to optimize your habits and workflows
- Graduated experiment phases: task โ†’ goal โ†’ automation
- Your AI companion that turns screen time into personal growth


## ๐Ÿš€ Quick Start

### Download

Platform
Download

[Apple Silicon (.dmg)](https://github.com/tensorboy/hawkeye/releases/latest) ยท [Intel (.dmg)](https://github.com/tensorboy/hawkeye/releases/latest)

[Installer (.exe)](https://github.com/tensorboy/hawkeye/releases/latest)

[Debian/Ubuntu (.deb)](https://github.com/tensorboy/hawkeye/releases/latest) ยท [AppImage](https://github.com/tensorboy/hawkeye/releases/latest)

โš ๏ธ macOS: "App is damaged" fix

```bash
# Remove quarantine attribute
xattr -cr /Applications/Hawkeye.app
```

### Setup in 60 Seconds

```bash
# 1. Clone
git clone https://github.com/tensorboy/hawkeye.git && cd hawkeye

# 2. Install
pnpm install

# 3. Run
pnpm dev
```

### Configure AI Provider

Option 1: Google Gemini (Recommended โ€” free tier)

1. Get a free API key at [aistudio.google.com/apikey](https://aistudio.google.com/apikey)
2. Enter your key in Settings โ†’ Gemini API Key
3. Model defaults to `gemini-2.0-flash` (1M context window)

Option 2: OpenAI-Compatible API

Works with OpenAI, DeepSeek, Groq, Together AI, or any OpenAI-compatible endpoint.

Set your base URL, API key, and model name in Settings.

Option 3: Local LLM with node-llama-cpp (100% Offline)

Download a GGUF model and set the model path in Settings. Supports Metal GPU acceleration on macOS.

Recommended models:
- **Qwen 2.5 7B** โ€” general purpose (4.7 GB)
- **Llama 3.2 3B** โ€” lightweight (2.0 GB)
- **LLaVA 1.6 7B** โ€” vision support (4.5 GB)

Option 4: Ollama (Legacy)

```bash
brew install ollama && ollama pull qwen3:8b
```

Select "Ollama" in Hawkeye settings.


## ๐Ÿ—๏ธ Architecture

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ HAWKEYE ENGINE โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ PERCEPTION โ”‚โ”€โ”€โ”€โ–ถโ”‚ REASONING โ”‚โ”€โ”€โ”€โ–ถโ”‚ EXECUTION โ”‚ โ”‚
โ”‚ โ”‚ Engine โ”‚ โ”‚ Engine โ”‚ โ”‚ Engine โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ€ข Screen OCR โ€ข Claude/Ollama โ€ข Shell Commands โ”‚
โ”‚ โ€ข Clipboard โ€ข Task Analysis โ€ข File Operations โ”‚
โ”‚ โ€ข File Watch โ€ข Intent Detect โ€ข App Control โ”‚
โ”‚ โ€ข Window Track โ€ข Suggestions โ€ข Browser Auto โ”‚
โ”‚ โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ INTERFACES โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ–ฅ๏ธ Desktop โ”‚ ๐Ÿงฉ VS Code โ”‚ ๐ŸŒ Chrome โ”‚ ๐Ÿ“ฆ Core โ”‚
โ”‚ (Electron) โ”‚ Extension โ”‚ Extension โ”‚ (npm pkg) โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

### ๐Ÿ”ฎ Future: Multi-Modal HCI Pipeline

Hawkeye is evolving into a full multi-modal human-computer interaction system that combines **audio understanding**, **visual perception**, and **gesture control**.

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ HAWKEYE MULTI-MODAL HCI PIPELINE โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ INPUT LAYER โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ ๐Ÿ“ท Camera โ”€โ”€โ”€โ”€โ–ถ MediaPipe Holistic โ”‚ โ”‚
โ”‚ โ”‚ โ€ข Face: 468 landmarks โ”‚ โ”‚
โ”‚ โ”‚ โ€ข Pose: 33 keypoints โ”‚ โ”‚
โ”‚ โ”‚ โ€ข Hands: 21 ร— 2 keypoints โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ ๐ŸŽ™๏ธ Microphone โ”€โ–ถ Silero VAD โ”€โ–ถ Audio Buffer โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ–ผ โ–ผ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ VISUAL PROCESSING โ”‚ โ”‚ AUDIO PROCESSING โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ Face Tracker โ”‚ โ”‚ DiariZen / Pyannote โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Multi-face detection โ”‚ โ”‚ โ”œโ”€ Speaker diarization โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Face ID assignment โ”‚ โ”‚ โ”œโ”€ "Who is speaking?" โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ Lip movement analysis โ”‚ โ”‚ โ””โ”€ Speaker embeddings โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ Gesture Recognizer โ”‚ โ”‚ Whisper (smart-whisper) โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Hand pose classification โ”‚ โ”‚ โ”œโ”€ Speech-to-text โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Dynamic gesture detect โ”‚ โ”‚ โ”œโ”€ Language detection โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ Custom gesture mapping โ”‚ โ”‚ โ””โ”€ Timestamp alignment โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ–ผ โ–ผ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ FUSION & MATCHING LAYER โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ Audio-Visual Matching โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Lip-sync correlation (who's lips match the audio?) โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Face-voice association (learn speaker identity) โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ Active speaker detection (LoCoNet / AS-Net) โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ Context Aggregation โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ Combine: transcription + speaker ID + face ID + gesture โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ Generate unified interaction events โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚
โ”‚ โ–ผ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ ACTION EXECUTION โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ Gesture โ†’ Command Mapping โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ ๐Ÿ‘ Thumbs Up โ†’ Confirm action โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ โœ‹ Open Palm โ†’ Pause / Stop โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ ๐Ÿ‘† Point Up โ†’ Scroll up โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ ๐Ÿ‘‡ Point Down โ†’ Scroll down โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ โœŒ๏ธ Victory โ†’ Screenshot โ”‚ โ”‚
โ”‚ โ”‚ โ”œโ”€ ๐Ÿค Pinch โ†’ Zoom in/out โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ ๐Ÿ–๏ธ Swipe โ†’ Switch window / tab โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ Voice Command + Gesture = Enhanced Control โ”‚ โ”‚
โ”‚ โ”‚ โ””โ”€ "Open browser" + Point โ†’ Open browser at pointed location โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚ โ”‚
โ”‚ โ–ผ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ OUTPUT โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ ๐Ÿ“ Attributed Transcription โ”‚ โ”‚
โ”‚ โ”‚ "Alice: Let's review the code changes" โ”‚ โ”‚
โ”‚ โ”‚ "Bob: I'll share my screen [๐Ÿ‘† pointing at screen]" โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ ๐ŸŽฎ System Control โ”‚ โ”‚
โ”‚ โ”‚ Mouse movement, clicks, keyboard shortcuts, app switching โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ”‚ ๐ŸŒณ Life Tree Update โ”‚ โ”‚
โ”‚ โ”‚ Activity tracking, goal inference, habit analysis โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

**Key Technologies:**
| Component | Technology | Status |
|-----------|------------|--------|
| Voice Activity Detection | Silero VAD | โœ… Planned |
| Speech-to-Text | Whisper (smart-whisper) | โœ… Implemented |
| Speaker Diarization | DiariZen / Pyannote | ๐Ÿ”„ Research |
| Active Speaker Detection | LoCoNet (CVPR 2024) | ๐Ÿ”„ Research |
| Body Tracking | MediaPipe Holistic | โœ… Planned |
| Gesture Recognition | MediaPipe Gesture | โœ… Planned |
| Face-Voice Matching | Custom Fusion | ๐Ÿ”„ Research |


## ๐Ÿ“ฆ Project Structure

```
hawkeye/
โ”œโ”€โ”€ packages/
โ”‚ โ”œโ”€โ”€ core/ # ๐Ÿง  Core engine (local processing)
โ”‚ โ”‚ โ”œโ”€โ”€ perception/ # Screen, clipboard, file monitoring
โ”‚ โ”‚ โ”œโ”€โ”€ ai/ # AI providers (Claude, Ollama, etc.)
โ”‚ โ”‚ โ”œโ”€โ”€ execution/ # Action execution system
โ”‚ โ”‚ โ””โ”€โ”€ storage/ # Local database (SQLite)
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ desktop/ # ๐Ÿ–ฅ๏ธ Electron desktop app
โ”‚ โ”œโ”€โ”€ vscode-extension/ # ๐Ÿงฉ VS Code extension
โ”‚ โ””โ”€โ”€ chrome-extension/ # ๐ŸŒ Chrome browser extension
โ”‚
โ”œโ”€โ”€ docs/ # ๐Ÿ“– Documentation
โ””โ”€โ”€ website/ # ๐ŸŒ Marketing site
```


## ๐Ÿ”’ Privacy & Security

| Aspect | How We Protect You |
|--------|-------------------|
| **Screenshots** | โœ… Analyzed locally, never uploaded |
| **Clipboard** | โœ… Processed on-device only |
| **Files** | โœ… Monitored locally, paths never sent |
| **AI Calls** | โœ… Only minimal context text sent (or use local LLM) |
| **Dangerous Ops** | โœ… Always requires your confirmation |

> ๐Ÿ“ All data stored in `~/.hawkeye/` โ€” you own your data.


## ๐Ÿ“– Usage Examples

### As a Library

```typescript
import { HawkeyeEngine } from '@hawkeye/core';

const engine = new HawkeyeEngine({
provider: 'ollama',
model: 'qwen3:8b'
});

// Get AI-powered suggestions based on current context
const suggestions = await engine.observe();

// Execute a suggestion with user confirmation
await engine.execute(suggestions[0].id);
```

### File Watcher

```typescript
import { FileWatcher } from '@hawkeye/core';

const watcher = new FileWatcher({
paths: ['~/Downloads', '~/Documents'],
events: ['create', 'move']
});

watcher.on('change', (event) => {
console.log(`${event.type}: ${event.path}`);
});
```


## ๐Ÿ›ก๏ธ Advanced Features

### Exponential Backoff Retry
AI provider calls use exponential backoff with jitter to handle transient failures gracefully, preventing thundering herd effects.

### SQLite FTS5 Full-Text Search
Context history (window titles, clipboard, OCR text) is indexed with SQLite FTS5 for instant fuzzy search across all recorded observations.

### Adaptive Refresh Rate
The observation interval adjusts dynamically based on user activity โ€” fast polling when active, slow polling when idle โ€” saving CPU and battery.

### Priority Task Queue
A priority-based task queue with deduplication ensures that AI requests and plan executions are processed efficiently without duplicate work.

### MCP Server Tools
Hawkeye exposes 15+ tools via MCP (Model Context Protocol) for screen perception, window management, file organization, and automation.

### Safety Guardrails
An agent monitor enforces cost limits, blocks dangerous operations (e.g. `rm -rf /`), requires confirmation for risky actions, and supports a sandbox mode.

### Menu Bar Panel
A macOS-style popover panel accessible from the system tray provides quick actions, recent activity feed, and real-time module status indicators.

### Provider Unified Protocol
All AI providers declare their capabilities (chat, vision, streaming, function calling), enabling intelligent routing and health monitoring across providers.


## ๐Ÿ—บ๏ธ Roadmap

- [x] Core perception engine
- [x] Desktop app (Electron)
- [x] VS Code extension
- [x] Chrome extension
- [x] Local LLM support (Ollama, node-llama-cpp)
- [x] Multi-provider AI (Gemini, OpenAI-compatible, LlamaCpp)
- [x] Provider unified protocol with capability routing
- [x] Streaming and health check support
- [x] SQLite FTS5 full-text search
- [x] Exponential backoff retry strategy
- [x] Adaptive refresh rate
- [x] Priority task queue
- [x] MCP Server with 15+ tools
- [x] Safety guardrails and agent monitoring
- [x] Menu bar panel (macOS-style popover)
- [x] Life Tree โ€” AI maps your life journey and enhances your story
- [ ] Desktop โ†” Extension real-time sync
- [ ] Plugin system
- [ ] Custom workflow builder
- [ ] Mobile companion app


## ๐Ÿค Contributing

Contributions are what make the open source community amazing! Any contributions you make are **greatly appreciated**.

1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the Branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines.


## โญ Star History





Star History Chart


## ๐Ÿ“„ License

Distributed under the MIT License. See [LICENSE](LICENSE) for more information.


## โ˜• Support

If you find Hawkeye useful, consider buying me a coffee!


Buy Me A Coffee



Buy Me a Coffee QR Code


---

**[๐ŸŒ Website](https://hawkiyi.com)** ยท **[๐Ÿ“– Docs](https://hawkiyi.com/docs)** ยท **[๐Ÿฆ Twitter](https://twitter.com/hawkeyeai)** ยท **[๐Ÿ’ฌ Discord](https://discord.gg/hawkeye)**

Built with โค๏ธ by the Hawkeye Team


**If Hawkeye helps you, please consider giving it a โญ**