Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tensorchord/modelz-py
Python SDK and CLI for modelz.ai, which is a developer-first platform for prototyping and deploying machine learning models.
https://github.com/tensorchord/modelz-py
inference llm machine-learning serverless serverless-inference
Last synced: about 2 months ago
JSON representation
Python SDK and CLI for modelz.ai, which is a developer-first platform for prototyping and deploying machine learning models.
- Host: GitHub
- URL: https://github.com/tensorchord/modelz-py
- Owner: tensorchord
- License: apache-2.0
- Created: 2023-02-16T09:59:05.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-10-12T08:22:00.000Z (about 1 year ago)
- Last Synced: 2024-02-25T12:34:21.361Z (11 months ago)
- Topics: inference, llm, machine-learning, serverless, serverless-inference
- Language: Python
- Homepage: https://tensorchord.github.io/modelz-py/
- Size: 199 KB
- Stars: 7
- Watchers: 6
- Forks: 6
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Modelz Python SDK
[Docs](https://tensorchord.github.io/modelz-py/) | [Templates](https://cloud.modelz.ai/templates) | [ModelZ](https://modelz.ai) | [ModelZ Docs](https://docs.modelz.ai/)
[ModelZ](https://modelz.ai) is an MLOps platform, you can deploy serverless instance for machine learning models by packed Docker image, such as Stable Diffusion, Dolly, ImageBind, and so on...
`Deployment` is an instance of any ML service deployed at `ModelZ`, you could create one and then make `inference` to it.
`Templates` are preset Docker images for `deployment`, which is widely acknowledged used ML models, official templates are built and maintained by `ModelZ` developers. While it's available for you to define your own `template` and `deployment`.
The python SDK is designed for CURD to your `deployments`, and sent request to them to make `inference`. It's an alternative of ModelZ WebUI operation, which could be more friendly with CI/CD pipelines or at model development.
## Install
```shell
pip install modelz-py
```## CLI usage
We support these functions now:
- create/update/list/delete deployments
- make inference to deployments
- get metric information of any deploymentThose functions will be supported in the future:
- build image and push to registry
**See [CLI Docs](https://tensorchord.github.io/modelz-py/cli.html) for all usages.**
## Example
### Create and infer to ModelZ deployment at terminal
#### Step 1: Create deployment
First, you need to create a deployment at ModelZ platform. We pick `Stable Diffusion` image for this example.
To get more predefined images, see our [templates](https://cloud.modelz.ai/templates).You can get your ModelZ `API Key` and `User ID` from [here](https://cloud.modelz.ai/settings) after register.
ModelZ supports these type of images:
- DockerHub images: starts with `docker.io/...`, you could build it yourself and upload to DockerHub.
- Google Cloud Registry images: starts with `xxx-docker.pkg.dev/...`, maintainered by ModelZ developers and you could find them at our [Templates](https://cloud.modelz.ai/templates).```shell
export MODELZ_API_KEY=mzi-1234567890987654321
export MODELZ_USER=00000000-1111-1111-1111-000000000000
modelz deployment create \
--image us-central1-docker.pkg.dev/nth-guide-378813/modelzai/mosec-stable-diffusion:23.04.1 \
--server-resource nvidia-tesla-t4-4c-16g \
--framework mosec \
--name stable-diffusion-mosec
```
The result might be something like:
```json
{
"spec": {
"deployment_resource": {},
"deployment_source": {
"docker": {
"image": "us-central1-docker.pkg.dev/nth-guide-378813/modelzai/mosec-stable-diffusion:23.04.1"
}
},
"framework": "mosec",
"http_probe_path": "/",
"id": "0a93636b-5ed3-4abd-8fac-8a7c5a4026c9",
"image_config": {
"enable_cache_optimize": false
},
"max_replicas": 1,
"min_replicas": 0,
"name": "stable-diffusion-mosec",
"server_resource": "nvidia-tesla-t4-4c-16g",
"startup_duration": 300,
"target_load": 10,
"zero_duration": 300
},
"status": {
"available_replicas": 0,
"innocation_count": 0,
"replicas": 0
}
}
```#### Step 2: Get Inference Endpoint
After a while, you could get endpoint of deployment from `list` command.
```shell
modelz deployment list -k mzi-1234567890987654321 -u 00000000-1111-1111-1111-000000000000
```
or `get` command where deployment id of `-d` from `create` command:
```shell
modelz deployment get -k mzi-1234567890987654321 -u 00000000-1111-1111-1111-000000000000 -d 0a93636b-5ed3-4abd-8fac-8a7c5a4026c9
```
The result(get) might be something like:
```json
{
"spec": {
"deployment_resource": {},
"deployment_source": {
"docker": {
"image": "us-central1-docker.pkg.dev/nth-guide-378813/modelzai/mosec-stable-diffusion:23.04.1"
}
},
"framework": "mosec",
"id": "0a93636b-5ed3-4abd-8fac-8a7c5a4026c9",
"image_config": {
"enable_cache_optimize": false
},
"max_replicas": 1,
"min_replicas": 0,
"name": "stable-diffusion-mosec",
"server_resource": "nvidia-tesla-t4-4c-16g",
"startup_duration": 300,
"target_load": 10,
"zero_duration": 300
},
"status": {
"available_replicas": 0,
"created_at": "2023-10-12T06:17:15Z",
"endpoint": "http://stable-diffusion-mosec-vc166fuhjuzkupai.modelz.tech",
"innocation_count": 0,
"phase": "NoReplicas",
"replicas": 0
}
}
```#### Step 3: Make Inference
Then you could send any inference you like to the deployment.
```shell
export MODELZ_API_KEY=mzi-1234567890987654321
modelz inference \
--endpoint http://stable-diffusion-mosec-vc166fuhjuzkupai.modelz.tech \
--serde msgpack --write-file cat.jpg cute cat
```#### Step 4: Delete deployment
When you don't need an deployment any more, don't forget to delete it when you want.
The selected deployment would be deleted immediately.
**This operation can not be undone!**```shell
export MODELZ_API_KEY=mzi-1234567890987654321
export MODELZ_USER=00000000-1111-1111-1111-000000000000
modelz deployment delete -d b807e092-f748-4d71-8a1d-e57be617c532
```### Create and infer to ModelZ deployment by code
```python
import time
from modelz import DeploymentClient, ModelzClient
from modelz.openapi.sdk.models import (
DeploymentSpec,
DeploymentCreateRequest,
DeploymentDockerSource,
DeploymentSource,
DeploymentSpec,
DeploymentUpdateRequest,
FrameworkType,
ServerResource,
DeploymentUpdateRequestEnvVars,
)s
from modelz.console import jsonFormattedPrint# Get ModelZ User ID and API Key from https://cloud.modelz.ai/settings after register.
modelz_user_id = "00000000-1111-1111-1111-000000000000"
modelz_api_key = "mzi-1234567890987654321"# Create client to operate deployments
client = DeploymentClient(login_name=modelz_user_id, key=modelz_api_key)# Step 1: Create deployment
spec = DeploymentSpec(
deployment_source=DeploymentSource(
docker=DeploymentDockerSource(
image="us-central1-docker.pkg.dev/nth-guide-378813/modelzai/mosec-stable-diffusion:23.04.1")),
server_resource=ServerResource.NVIDIA_TESLA_T4_4C_16G,
framework=FrameworkType.MOSEC,
name="stable-diffusion",
min_replicas=0,
max_replicas=1,
startup_duration=300,
zero_duration=300,
target_load=10,
)
resp = client.create(DeploymentCreateRequest(spec))
print(jsonFormattedPrint(resp))
# Get id of deployment
deployment_id = resp.parsed.spec.id# Step 2: Get deployments its endpoint for inference
resp = client.get(deployment_id)
print(jsonFormattedPrint(resp))
endpoint = resp.parsed.status.endpoint# Waiting for ingress created
time.sleep(10)# Step 3: Make Inference
infer_client = ModelzClient(key=modelz_api_key, endpoint=endpoint, timeout=300)
resp = infer_client.inference(params="cute cat", serde="msgpack")
resp.save_to_file("image.jpg")# Step 3.1: Update deployment
req = DeploymentUpdateRequest(
env_vars=DeploymentUpdateRequestEnvVars.from_dict({"debug":"true"})
)
resp = client.update(deployment_id, req)
print(jsonFormattedPrint(resp))# Step 4: Delete deployment
client.delete(deployment_id)
```### Gradio Client on ModelZ Endpoints
We provide a lightweight Python library that makes it very easy to use any Gradio app served on modelz as an API. The functionalities of `GradioClient` are completely identical to `Client` in `gradio_client` library provided by Gradio. The only difference is that when initializing the client, you should enter your Modelz serving endpoint URL instead of a Hugging Face space.
Example Usage:
```python
from modelz import GradioClient as Client# Parameter here is the endpoint of your Modelz deployment
# The format is like https://${DEPOLOYMENT_KEY}.modelz.io/
cli = Client("https://translator-th85ze61tj4n3klc.modelz.io/")cli.view_api()
# >> Client.predict() Usage Info
# ---------------------------
# Named API endpoints: 1# - predict(text, api_name="/predict") -> output
# Parameters:
# - [Textbox] text: str
# Returns:
# - [Textbox] output: str
cli.predict("hallo", api_name="/predict")
# >> "Bonjour."```