Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tensorflow/lingvo
Lingvo
https://github.com/tensorflow/lingvo
asr distributed gpu-computing language-model lm machine-translation mnist nlp research seq2seq speech speech-recognition speech-synthesis speech-to-text tensorflow translation tts
Last synced: 6 days ago
JSON representation
Lingvo
- Host: GitHub
- URL: https://github.com/tensorflow/lingvo
- Owner: tensorflow
- License: apache-2.0
- Created: 2018-07-24T22:30:28.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-12-23T21:48:27.000Z (28 days ago)
- Last Synced: 2025-01-07T17:09:46.684Z (13 days ago)
- Topics: asr, distributed, gpu-computing, language-model, lm, machine-translation, mnist, nlp, research, seq2seq, speech, speech-recognition, speech-synthesis, speech-to-text, tensorflow, translation, tts
- Language: Python
- Homepage:
- Size: 142 MB
- Stars: 2,824
- Watchers: 118
- Forks: 447
- Open Issues: 144
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-AIML-Data-Ops - Tensorflow Lingvo - A framework for building neural networks in Tensorflow, particularly sequence models. [Lingvo: A TensorFlow Framework for Sequence Modeling](https://blog.tensorflow.org/2019/02/lingvo-tensorflow-framework-for-sequence-modeling.html). (AutoML NLP)
- awesome-production-machine-learning - Tensorflow Lingvo - A [framework](https://blog.tensorflow.org/2019/02/lingvo-tensorflow-framework-for-sequence-modeling.html) for building neural networks in Tensorflow, particularly sequence models. (Industry Strength NLP)
- StarryDivineSky - tensorflow/lingvo
README
# Lingvo
[![PyPI](https://badge.fury.io/py/lingvo.svg)](https://badge.fury.io/py/lingvo)
[![Python](https://img.shields.io/pypi/pyversions/lingvo)](https://badge.fury.io/py/tensorflow)[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://tensorflow.github.io/lingvo)
[![License](https://img.shields.io/github/license/tensorflow/lingvo)](LICENSE)
## What is it?
Lingvo is a framework for building neural networks in Tensorflow, particularly
sequence models.A list of publications using Lingvo can be found [here](PUBLICATIONS.md).
## Table of Contents
* [Releases](#releases)
* [Major breaking changes](#major-breaking-changes)
* [Quick start](#quick-start)
* [Installation](#installation)
* [Running the MNIST image model](#running-the-mnist-image-model)
* [Running the machine translation model](#running-the-machine-translation-model)
* [Running the GShard transformer based giant language model](#running-the-gshard-transformer-based-giant-language-model)
* [Running the 3d object detection model](#running-the-3d-object-detection-model)
* [Models](#models)
* [Automatic Speech Recognition](#automatic-speech-recognition)
* [Car](#car)
* [Image](#image)
* [Language Modelling](#language-modelling)
* [Machine Translation](#machine-translation)
* [References](#references)
* [License](#license)## Releases
PyPI Version | Commit
------------ | ----------------------------------------
0.12.4 | --
0.11.0 | 6fae10077756f54beacd5c454959f20b33fd65e2
0.10.0 | 075fd1d88fa6f92681f58a2383264337d0e737ee
0.9.1 | c1124c5aa7af13d2dd2b6d43293c8ca6d022b008
0.9.0 | f826e99803d1b51dccbbbed1ef857ba48a2bbefeOlder releases
PyPI Version | Commit
------------ | ----------------------------------------
0.8.2 | 93e123c6788e934e6b7b1fd85770371becf1e92e
0.7.2 | b05642fe386ee79e0d88aa083565c9a93428519eDetails for older releases are unavailable.
### Major breaking changes
**NOTE: this is not a comprehensive list. Lingvo releases do not offer any
guarantees regarding backwards compatibility.**#### HEAD
Nothing here.
#### 0.12.0
* **General**
* Tensorflow 2.9 is now required.
* Python 3.7 support has been removed.
* Compatible with (up to) Tensorflow 2.10 and Python 3.10#### 0.11.0
* **General**
* Tensorflow 2.7 is now the required version.
* Python 3.6 support has been removed.#### 0.10.0
* **General**
* Tensorflow 2.6 is now the required version.
* The theta_fn arg to CreateVariable() has been removed.#### 0.9.1
* **General**
* Python 3.9 is now supported.
* ops.beam_search_step now takes and returns an additional arg
`beam_done`.
* The namedtuple beam_search_helper.BeamSearchDecodeOutput now removes the
field `done_hyps`.#### 0.9.0
* **General**
* Tensorflow 2.5 is now the required version.
* Python 3.5 support has been removed.
* py_utils.AddGlobalVN and py_utils.AddPerStepVN have been combined into
py_utils.AddVN.
* BaseSchedule().Value() no longer takes a step arg.
* Classes deriving from BaseSchedule should implement Value() not FProp().
* theta.global_step has been removed in favor of py_utils.GetGlobalStep().
* py_utils.GenerateStepSeedPair() no longer takes a global_step arg.
* PostTrainingStepUpdate() no longer takes a global_step arg.
* The fatal_errors argument to custom input ops now takes error message
substrings rather than integer error codes.Older releases
#### 0.8.2
* **General**
* NestedMap Flatten/Pack/Transform/Filter etc now expand descendent dicts
as well.
* Subclasses of BaseLayer extending from `abc.ABCMeta` should now extend
`base_layer.ABCLayerMeta` instead.
* Trying to call self.CreateChild outside of `__init__` now raises an
error.
* `base_layer.initializer` has been removed. Subclasses no longer need to
decorate their `__init__` function.
* Trying to call self.CreateVariable outside of `__init__` or
`_CreateLayerVariables` now raises an error.
* It is no longer possible to access self.vars or self.theta inside of
`__init__`. Refactor by moving the variable creation and access to
`_CreateLayerVariables`. The variable scope is set automatically
according to the layer name in `_CreateLayerVariables`.Details for older releases are unavailable.
## Quick start
### Installation
There are two ways to set up Lingvo: installing a fixed version through pip, or
cloning the repository and building it with bazel. Docker configurations are
provided for each case.If you would just like to use the framework as-is, it is easiest to just install
it through pip. This makes it possible to develop and train custom models using
a frozen version of the Lingvo framework. However, it is difficult to modify the
framework code or implement new custom ops.If you would like to develop the framework further and potentially contribute
pull requests, you should avoid using pip and clone the repository instead.**pip:**
The [Lingvo pip package](https://pypi.org/project/lingvo) can be installed with
`pip3 install lingvo`.See the
[codelab](https://colab.research.google.com/github/tensorflow/lingvo/blob/master/codelabs/introduction.ipynb)
for how to get started with the pip package.**From sources:**
The prerequisites are:
* a TensorFlow 2.7 [installation](https://www.tensorflow.org/install/),
* a `C++` compiler (only g++ 7.3 is officially supported), and
* the bazel build system.Refer to [docker/dev.Dockerfile](docker/dev.Dockerfile) for a set of working
requirements.`git clone` the repository, then use bazel to build and run targets directly.
The `python -m module` commands in the codelab need to be mapped onto `bazel
run` commands.**docker:**
Docker configurations are available for both situations. Instructions can be
found in the comments on the top of each file.* [lib.dockerfile](docker/lib.dockerfile) has the Lingvo pip package
preinstalled.
* [dev.Dockerfile](docker/dev.Dockerfile) can be used to build Lingvo from
sources.[How to install docker.](https://docs.docker.com/install/linux/docker-ce/ubuntu/)
### Running the MNIST image model
#### Preparing the input data
**pip:**
```shell
mkdir -p /tmp/mnist
python3 -m lingvo.tools.keras2ckpt --dataset=mnist
```**bazel:**
```shell
mkdir -p /tmp/mnist
bazel run -c opt //lingvo/tools:keras2ckpt -- --dataset=mnist
```The following files will be created in `/tmp/mnist`:
* `mnist.data-00000-of-00001`: 53MB.
* `mnist.index`: 241 bytes.#### Running the model
**pip:**
```shell
cd /tmp/mnist
curl -O https://raw.githubusercontent.com/tensorflow/lingvo/master/lingvo/tasks/image/params/mnist.py
python3 -m lingvo.trainer --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log
```**bazel:**
```shell
(cpu) bazel build -c opt //lingvo:trainer
(gpu) bazel build -c opt --config=cuda //lingvo:trainer
bazel-bin/lingvo/trainer --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr
```After about 20 seconds, the loss should drop below 0.3 and a checkpoint will be
saved, like below. Kill the trainer with Ctrl+C.```
trainer.py:518] step: 205, steps/sec: 11.64 ... loss:0.25747201 ...
checkpointer.py:115] Save checkpoint
checkpointer.py:117] Save checkpoint done: /tmp/mnist/log/train/ckpt-00000205
```Some artifacts will be produced in `/tmp/mnist/log/control`:
* `params.txt`: hyper-parameters.
* `model_analysis.txt`: model sizes for each layer.
* `train.pbtxt`: the training `tf.GraphDef`.
* `events.*`: a tensorboard events file.As well as in `/tmp/mnist/log/train`:
* `checkpoint`: a text file containing information about the checkpoint files.
* `ckpt-*`: the checkpoint files.Now, let's evaluate the model on the "Test" dataset. In the normal training
setup the trainer and evaler should be run at the same time as two separate
processes.**pip:**
```shell
python3 -m lingvo.trainer --job=evaler_test --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log
```**bazel:**
```shell
bazel-bin/lingvo/trainer --job=evaler_test --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr
```Kill the job with Ctrl+C when it starts waiting for a new checkpoint.
```
base_runner.py:177] No new check point is found: /tmp/mnist/log/train/ckpt-00000205
```The evaluation accuracy can be found slightly earlier in the logs.
```
base_runner.py:111] eval_test: step: 205, acc5: 0.99775392, accuracy: 0.94150388, ..., loss: 0.20770954, ...
```### Running the machine translation model
To run a more elaborate model, you'll need a cluster with GPUs. Please refer to
[`third_party/py/lingvo/tasks/mt/README.md`](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/README.md)
for more information.### Running the GShard transformer based giant language model
To train a GShard language model with one trillion parameters on GCP using
CloudTPUs v3-512 using 512-way model parallelism, please refer to
[`third_party/py/lingvo/tasks/lm/README.md`](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/lm/README.md)
for more information.### Running the 3d object detection model
To run the StarNet model using CloudTPUs on GCP, please refer to
[`third_party/py/lingvo/tasks/car/README.md`](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/README.md).## Models
### Automatic Speech Recognition
* [Listen, Attend and Spell](https://arxiv.org/pdf/1508.01211.pdf).
William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. ICASSP 2016.[End-to-end Continuous Speech Recognition using Attention-based Recurrent
NN: First Results](https://arxiv.org/pdf/1412.1602.pdf).
Jan Chorowski,
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. arXiv 2014.* [asr.librispeech.Librispeech960Grapheme](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/asr/params/librispeech.py)
* [asr.librispeech.Librispeech960Wpm](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/asr/params/librispeech.py)### Car
* [DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection](https://arxiv.org/pdf/2203.08195.pdf).
Yingwei Li, Adams Wei Yu, Tianjian Meng, Ben Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Bo Wu, Yifeng Lu, Denny
Zhou, Quoc V. Le, Alan Yuille, Mingxing Tan. CVPR 2022.
* [car.waymo_deepfusion.DeepFusionCenterPointPed](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/params/waymo_deepfusion.py)* [StarNet: Targeted Computation for Object Detection in Point Clouds](https://arxiv.org/pdf/1908.11069.pdf).
Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang, Yuning Chai, Pei Sun, Yin
Zhou, Xi Yi, Ouais Alsharif, Patrick Nguyen, Zhifeng Chen, Jonathon Shlens,
and Vijay Vasudevan. arXiv 2019.* [car.kitti.StarNetCarModel0701](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/params/kitti.py)
* [car.kitti.StarNetPedCycModel0704](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/params/kitti.py)
* [car.waymo.StarNetVehicle](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/params/waymo.py)
* [car.waymo.StarNetPed](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/car/params/waymo.py)### Image
* [Gradient-based learning applied to document recognition](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf).
Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. IEEE 1998.* [image.mnist.LeNet5](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/image/params/mnist.py)
### Language Modelling
* [Exploring the Limits of Language Modeling](https://arxiv.org/pdf/1602.02410.pdf).
Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. arXiv, 2016.* [lm.one_billion_wds.WordLevelOneBwdsSimpleSampledSoftmax](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/lm/params/one_billion_wds.py)
* [GShard: Scaling Giant Models with Conditional Computation and Automatic
Sharding](https://arxiv.org/pdf/2006.16668.pdf).
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer and Zhifeng Chen arXiv, 2020.* [lm.synthetic_packed_input.DenseLm1T16x16](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/lm/params/synthetic_packed_input.py)
### Machine Translation
* [The Best of Both Worlds: Combining Recent Advances in Neural Machine
Translation](http://aclweb.org/anthology/P18-1008).
Mia X. Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob
Uszkoreit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
ACL 2018.* [mt.wmt14_en_de.WmtEnDeTransformerBase](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py)
* [mt.wmt14_en_de.WmtEnDeRNMT](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmt14_en_de.py)
* [mt.wmtm16_en_de.WmtCaptionEnDeTransformer](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/wmtm16_en_de.py)* [Self-supervised and Supervised Joint Training for Resource-rich Neural
Machine Translation](https://arxiv.org/pdf/2106.04060.pdf).
Yong Cheng, Wei Wang, Lu Jiang, and Wolfgang Macherey. ICML 2021.* [mt.xendec.wmt14_en_de.WmtEnDeXEnDec](https://github.com/tensorflow/lingvo/blob/master/lingvo/tasks/mt/params/xendec/wmt14_en_de.py)
## References
* [API Docs](https://tensorflow.github.io/lingvo/)
* [Codelab](https://colab.research.google.com/github/tensorflow/lingvo/blob/master/codelabs/introduction.ipynb)Please cite this [paper](https://arxiv.org/abs/1902.08295) when referencing
Lingvo.```
@misc{shen2019lingvo,
title={Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling},
author={Jonathan Shen and Patrick Nguyen and Yonghui Wu and Zhifeng Chen and others},
year={2019},
eprint={1902.08295},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```## License
[Apache License 2.0](LICENSE)