https://github.com/tensorflow/tcav
Code for the TCAV ML interpretability project
https://github.com/tensorflow/tcav
interpretability machine-learning tcav
Last synced: 7 days ago
JSON representation
Code for the TCAV ML interpretability project
- Host: GitHub
- URL: https://github.com/tensorflow/tcav
- Owner: tensorflow
- License: apache-2.0
- Created: 2018-07-03T17:45:35.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-07-30T21:34:45.000Z (9 months ago)
- Last Synced: 2025-03-12T23:02:20.724Z (about 1 month ago)
- Topics: interpretability, machine-learning, tcav
- Language: Jupyter Notebook
- Homepage:
- Size: 625 KB
- Stars: 634
- Watchers: 33
- Forks: 151
- Open Issues: 17
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-explainable-AI - https://github.com/tensorflow/tcav - learn  (Python Libraries(sort in alphabeta order) / Evaluation methods)
- awesome-python-machine-learning-resources - GitHub - 11% open · ⏱️ 16.09.2021): (模型的可解释性)
README
# Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, Rory SayresICML Paper: https://arxiv.org/abs/1711.11279
## What is TCAV?
Testing with Concept Activation Vectors (TCAV) is a new interpretability method
to understand what signals your neural networks models uses for prediction.### What's special about TCAV compared to other methods?
Typical interpretability methods show importance weights in each input feature
(e.g, pixel). TCAV instead shows importance of high level concepts (e.g., color,
gender, race) for a prediction class - this is how humans communicate!Typical interpretability methods require you to have one particular image that
you are interested in understanding. TCAV gives an explanation that is generally
true for a class of interest, beyond one image (global explanation).For example, for a given class, we can show how much race or gender was
important for classifications in InceptionV3. Even though neither race nor
gender labels were part of the training input!### Cool, where do these concepts come from?
TCAV learns concepts from examples. For instance, TCAV needs a couple of
examples of female, and something not female to learn a "gender" concept. We
have tested a variety of concepts: color, gender, race, textures and many
others.### Why use high level concepts instead of input features?
Humans think and communicate using concepts, and not using numbers (e.g.,
weights to each feature). When there are lots of numbers to combine and reason
about (many features), it becomes harder and harder for humans to make sense of
the information they are accounting for. TCAV instead delivers explanations in
the way humans communicate to each other.### The consumer of the explanation may not know machine learning too well. Can they understand the explanation?
Yes. TCAV is designed to make sense to everyone - as long as they can understand
the high level concept!### Sounds good. Do I need to change my network to use TCAV?
No. You don't need to change or retrain your network to use TCAV.## Installation
Tensorflow must be installed to use TCAV. But it isn't included in the TCAV pip
package install_requires as a user may wish to use it with either the tensorflow
or tensorflow-gpu package. So please pip install tensorflow or tensorflow-gpu as
well as the tcav package.> pip install tcav
### Requirements
See requirements.txt for a list of python dependencies used in testing TCAV.
These will all be installed during pip installation of tcav with the exception
of tensorflow, as mentioned above.## How to use TCAV
See Run TCAV.ipynb for step by step guide, after pip installing the tcav
package.```python
mytcav = tcav.TCAV(sess,
target,
concepts,
bottlenecks,
act_gen,
alphas,
cav_dir=cav_dir,
num_random_exp=2)results = mytcav.run()
```## TCAV for discrete models
We provide a simple example of how to run TCAV on models trained on discrete,
non-image data. Please see```
cd tcav/tcav_examples/discrete/
```You can also find a Jupyter notebook for a model trained on KDD99 in here:
```
tcav/tcav_examples/discrete/kdd99_discrete_example.ipynb.
```## Requirements
- tensorflow
- numpy
- Pillow
- matplotlib
- scikit-learn
- scipy## How to run unit tests
`python -m tcav.cav_test`
`python -m tcav.model_test`
`python -m tcav.tcav_test`
`python -m tcav.utils_test`
## How to create a new version of the pip package
1. Ensure the version in setup.py has been updated to a new version.
2. Run `python setup.py bdist_wheel --python-tag py3` and `python setup.py
bdist_wheel --python-tag py2`.
3. Run `twine upload dist/*` to upload the py2 and py3 pip packages to PyPi.