Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/terilios/bch-ai-meeting-notes

🤖 Enterprise-grade meeting minutes generator powered by Azure OpenAI. Transforms meeting transcripts into structured documentation with automated analysis, multiple export formats (MD, DOCX, PDF), and intelligent visualization using Mermaid diagrams.
https://github.com/terilios/bch-ai-meeting-notes

ai automation azure-openai docker documentation meeting-minutes mermaid nlp python streamlit

Last synced: 13 days ago
JSON representation

🤖 Enterprise-grade meeting minutes generator powered by Azure OpenAI. Transforms meeting transcripts into structured documentation with automated analysis, multiple export formats (MD, DOCX, PDF), and intelligent visualization using Mermaid diagrams.

Awesome Lists containing this project

README

        

# BCH AI Meeting Notes Generator

An intelligent meeting minutes generator powered by Azure OpenAI and Streamlit. This application transforms meeting transcripts into well-structured, actionable documentation with automated analysis and multiple export formats.

## Features

- **Multiple Input Formats**: Support for TXT, PDF, DOCX, and MD files
- **Intelligent Processing**: Uses Azure OpenAI for content generation and analysis
- **Rich Output Formats**: Export as Markdown, DOCX, or PDF
- **Meeting Analysis**: Automated scoring across multiple dimensions:
- Meeting Effectiveness
- Participation & Engagement
- Action Item Management
- Risk Management
- Communication Quality
- **Visual Documentation**: Automated generation of Mermaid diagrams for:
- Process flows
- System architectures
- Timeline representations
- Organization structures
- Project dependencies

## Prerequisites

- Python 3.8+
- Pandoc (for document conversion)
- Mermaid-filter (for diagram generation)
- Azure OpenAI API access

## Environment Setup

1. Clone the repository:

```bash
git clone https://github.com/yourusername/bch-ai-meeting-notes.git
cd bch-ai-meeting-notes
```

2. Create and activate a virtual environment:

```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```

3. Install dependencies:

```bash
pip install -r requirements.txt
```

4. Install system dependencies:

```bash
# On macOS
brew install pandoc
npm install -g mermaid-filter

# On Ubuntu/Debian
sudo apt-get install pandoc
npm install -g mermaid-filter

# On Windows
choco install pandoc
npm install -g mermaid-filter
```

5. Create a `.env` file with your Azure OpenAI credentials:

```env
AZURE_OPENAI_API_KEY=your_api_key
AZURE_OPENAI_API_VERSION=your_api_version
AZURE_OPENAI_API_BASE=your_endpoint
AZURE_OPENAI_DEPLOYMENT_NAME=your_deployment_name
```

## Running the Application

### Local Development

```bash
streamlit run main.py
```

### Docker Deployment

1. Build the Docker image:

```bash
docker build -t bch-ai-meeting-notes .
```

2. Run the container:

```bash
docker run -p 8501:8501 --env-file .env bch-ai-meeting-notes
```

Access the application at http://localhost:8501

## Usage

1. Choose input method:
- Upload a transcript file (TXT, PDF, DOCX, MD)
- Paste text directly
2. Click "Generate Minutes"
3. Review the generated minutes and analysis
4. Download in your preferred format (MD, DOCX, PDF)

## Project Structure

```
bch-ai-meeting-notes/
├── main.py # Main application file
├── schema.json # Analysis schema definition
├── requirements.txt # Python dependencies
├── .env # Environment variables (not in git)
├── Dockerfile # Docker configuration
├── docker-compose.yml # Docker Compose configuration
└── images/ # Application images
├── bch.png
├── user.png
└── user.svg
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.