Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/terkelg/math
Math snippets with graphic programming in mind.
https://github.com/terkelg/math
math math-snippets spring velocity
Last synced: 2 months ago
JSON representation
Math snippets with graphic programming in mind.
- Host: GitHub
- URL: https://github.com/terkelg/math
- Owner: terkelg
- Created: 2015-12-20T14:23:31.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2016-11-17T02:42:26.000Z (about 8 years ago)
- Last Synced: 2024-10-28T09:53:11.322Z (3 months ago)
- Topics: math, math-snippets, spring, velocity
- Homepage:
- Size: 9.77 KB
- Stars: 117
- Watchers: 6
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-deep-learning-mustreads - Math Snippets
README
# Math Snippets
> Math snippets with graphic programming in mind.This is work in progress.
**To-do:**
- [ ] Convert all snippets to JS (Some are Action Script)
- [ ] Add live code examples
- [ ] Add simple desciptions## Contents
- [Snippets](https://github.com/terkelg/math/blob/master/README.md#snippets)
- [Radias & Degrees](https://github.com/terkelg/math#radians--degrees)
- [Calculate side lengths](https://github.com/terkelg/math#calculate-side-lengths)
- [Rotate a 2D point](https://github.com/terkelg/math#rotate-a-2d-point)
- [Linear distance bwetween 2 points](https://github.com/terkelg/math#linear-distance-2-points)
- [Linear distance between 2 vectors](https://github.com/terkelg/math#linear-distance-between-2-vectors)
- [Length of a vector (Magnitude)](https://github.com/terkelg/math#length-of-a-vector)
- [Add and substract vectors](https://github.com/terkelg/math#add-and-substract-vectors)
- [Normalize vector](https://github.com/terkelg/math#normalize-vector)
- [Dot product vectors](https://github.com/terkelg/math#dot-product-vectors)
- [Finding angle between 2 points](https://github.com/terkelg/math#finding-angle-between-2-points)
- [Finding angle between 2 vectors](https://github.com/terkelg/math#finding-angle-between-2-vectors)
- [Cross Product](https://github.com/terkelg/math#cross-product)
- [Rotate to the mouse (or any point)](https://github.com/terkelg/math#rotate-to-the-mouse-or-any-point)
- [Create waves](https://github.com/terkelg/math#create-waves)
- [Hex to decimal](https://github.com/terkelg/math#hex-to-decimal)
- [Decimal to hex](https://github.com/terkelg/math#decimal-to-hex)
- [Combine component colors](https://github.com/terkelg/math#combine-component-colors)
- [Extract component colors](https://github.com/terkelg/math#extract-component-colors)
- [Draw a curve through a point](https://github.com/terkelg/math#draw-a-curve-through-a-point)
- [Convert angular velocity to x, y velocity](https://github.com/terkelg/math#convert-angular-velocity-to-x-y-velocity)
- [Convert angular acceleration or any other force to x and y](https://github.com/terkelg/math#convert-angular-acceleration-or-any-other-force-to-x-and-y)
- [Add acceleration to velocity](https://github.com/terkelg/math#add-acceleration-to-velocity)
- [Add velocity to position](https://github.com/terkelg/math#add-velocity-to-position)
- [Testing for out of bound](https://github.com/terkelg/math#testing-for-out-of-bound)
- [Apply friction (correct way)](https://github.com/terkelg/math#apply-friction-correct-way)
- [Apply friction (the easy way)](https://github.com/terkelg/math#apply-friction-the-easy-way)
- [Simple easing, long form](https://github.com/terkelg/math#simple-easing-long-form)
- [Simple easing, abbreviated form](https://github.com/terkelg/math#simple-easing-abbreviated-form)
- [Simple easing, short form](https://github.com/terkelg/math#simple-easing-short-form)
- [Simple spring, long form](https://github.com/terkelg/math#simple-spring-long-form)
- [Simple spring, abbreviated form](https://github.com/terkelg/math#simple-spring-abbreviated-form)
- [Simple spring, short form](https://github.com/terkelg/math#simple-spring-short-form)
- [Offset spring](https://github.com/terkelg/math#offset-spring)
- [Distance-based collision detection](https://github.com/terkelg/math#distance-based-collision-detection)
- [Multiple-objects collision detection](https://github.com/terkelg/math#multiple-objects-collision-detection)
- [Coordinate rotation](https://github.com/terkelg/math#coordinate-rotation)
- [Reverse coordiante rotation](https://github.com/terkelg/math#reverse-coordiante-rotation)
- [Conservation of momentum in ActionScript (with a shortcut)](https://github.com/terkelg/math#conservation-of-momentum-in-actionscript-with-a-shortcut)
- [Gravity implementation](https://github.com/terkelg/math#gravity-implementation)
- [Resources](https://github.com/terkelg/math#resources)## Snippets
### Radians & Degrees
```
radians = degrees * Math.PI / 180;
degrees = radians * 180 / Math.PI;
``````js
// JavaScript
var angleInDegrees = 45;
var radians = angleInDegrees * Math.PI / 180;
var backToDegrees = radians * 180 / Math.PI;
```### Calculate side lengths
#### SOHCAHTOA###### Calculate basic trigonometric functions
```
Sine of an angle = opposite / hypotenuse
Cosine of an angle = adjacent / hypotenuse
Tangent of angle = opposite / adjacent
``````js
// Javascript
var hyp = 100;
var angleDegrees = 45;
var angleRadians = angleDegrees * Math.PI / 180;var opposite = Math.sin( angleRadians ) * hyp;
var adjacent = Math.cos( angleRadians ) * hyp;
var tangent = opposite / adjacent;
```### Rotate a 2D point
```js
var vec2 = {x: 2, y: 3};
var rotatedVector = rotate2D(vec2, angle);function rotate2D(vector, angle)
{
var theta = angle * Math.PI / 180; // radians
var matrix = [ Math.cos(theta), Math.sin(theta),
-Math.sin(theta), Math.cos(theta)
];
return {
x: matrix[0] * vector.x + matrix[1] * vector.y,
y: matrix[2] * vector.x + matrix[3] * vector.y
};
}```
### Linear distance between 2 points
```
dx = x2 - x1;
dy = y2 - y1;
dist = Math.sqrt(dx*dx + dy*dy);
``````js
// JavaScript
var x1 = 3;
var x2 = 5;
var distance = x2 — x1;
```### Linear distance between 2 vectors
#### a² + b² = c²```js
// Javascript
var v1 = {x: 4, y: -9};
var v2 = {x: 5, y: 15};var distance = Math.sqrt( Math.pow((v2.x — v1.x), 2) + Math.pow((v2.y — v1.y), 2) );
```### Length of a vector
#### Magnitude```js
// Javascript
// 2D -> hypotenuse
var v = {x: 4, y:-9};
var length = Math.sqrt( (Math.pow(v.x, 2) + Math.pow(v.y, 2)) );// 3D
var v = {x: 4, y:-9, z: 0.5};
var length = Math.sqrt( (Math.pow(v.x, 2) + Math.pow(v.y, 2) + Math.pow(v.z, 2) ));
```### Add and substract vectors
```js
var v1 = {x: 2, y: 3};
var v2 = {x: 2, y: -2};
var addedVec = {x: v1.x + v2.x, y: v1.y + v2.y};
var subVec = {x: v1.x - v2.x, y: v1.y - v2.y};
```### Normalize vector
```js
// Javascript
// 2D
var v = {x: 4, y:-9};
var length = Math.sqrt( (Math.pow(v.x, 2) + Math.pow(v.y,2)) );
var n = {x: v.x / length, y: v.y / length};// 3D
var v = {x: 4, y:-9, z: 3};
var length = Math.sqrt( Math.pow(v.x, 2) + Math.pow(v.y,2) + Math.pow(v.z,2) );
var n = {x: v.x / length, y: v.y / length, z: v.z / length};
```### Dot product vectors
```js
// Javascript
var v1 = {x: 4, y: 5, z: 9};
var v2 = {x: 5, y: 9, z: -5};
var dot = (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);
```### Finding angle between 2 points
```js
//Javascript
var x = -3;
var y = -2;
var radians = Math.atan2(x, y);
var degrees = radians * 180 / Math.PI;
```### Finding angle between 2 vectors
```js
// Javascript
var v1 = {x: 4, y: 5, z: 9};
var v2 = {x: 5, y: 9, z: -5};
var dot = (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);var lengthv1 = length(v1); // see length
var lengthv2 = length(v2); // see lengthvar radians = Math.acos(dot / (lengthv1 * lengthv2));
var angle = radians * 180 / Math.PI;
```### Cross Product
```js
// Javascript
var v1 = {x: 1, y: 2, z: 3};
var v2 = {x: 3, y: 2, z: 1};
var cross = {
x: v1.y*v2.z - v1.z*v2.y,
y: v1.z*v2.x - v1.x*v2.z,
z: v1.x*v2.y - v1.y*v2.x
};
```### Rotate to the mouse (or any point)
```js
var dx = mouseX - spriteX;
var dy = mouseY - spriteY;
sprite.rotation = Math.atan2(dy, dx) * 180 / Math.PI;
```### Create waves
```js
// value can be properties like x, y, alpha, rotation etc.
public function onEnterFrame(event:Event) {
value = center + Math.sin(angle) * range;
angle += speed;
}
```### Hex to decimal
```
trace(hexValue);
```### Decimal to hex
```
trace(decimalValue.toString(16));
```### Combine component colors
```
color24 = red << 16 | green << 8 | blue;
color32 = alpha << 24 | red << 16 | green << 8 | blue;
```### Extract component colors
```
red = color24 >> 16;
green = color24 >> 8 & 0xFF;
blue = color24 & 0xFF;alpha = color32 >> 24;
red = color24 >> 16 & 0xFF;
green = color24 >> 8 & 0xFF;
blue = color24 & 0xFF;
```### Draw a curve through a point
```
//xt, yt is the point to draw through
// x0, y0, x2, y2 is the end points
x1 = xt * 2 - (x0 - x2) / 2;
y1 = yt * 2 - (y0 - y2) / 2;
moveTo(x0, y0);
curveTo(x1, y1, x2, y2);
```### Convert angular velocity to x, y velocity
```
vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;
```### Convert angular acceleration or any other force to x and y
```
ax = Math.cos(angle) * force;
ay = Math.sin(angle) * force;
```### Add acceleration to velocity
```
vx += ax;
vy += ay;
```### Add velocity to position
```
sprite.x += vx;
sprite.y += vy;
```### Testing for out of bound
```
if(sprite.x - sprite.width / 2 > right) ||
sprite.x - sprite.width / 2 < left ||
sprite.y - sprite.height / 2 > bottom ||
sprite.y - sprite.height / 2 < top)
{
//remove or reposition sprite
}
```### Apply friction (correct way)
```
speed = Math.sqrt(vx*vx + vy*vy);
angle = Math.atan2(vy, vx);
if(speed > friction)
{
speed -= friction;
} else {
speed = 0;
}
vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;
```### Apply friction (the easy way)
```
vx *= friction;
vy *= friction;
```### Simple easing, long form
```
var dx = targetX - sprite.x;
var dy = targetY - sprite.y;
vx = dx * easing;
vy = dy * easing;
sprite.x += vx;
sprite.y += vy;
```### Simple easing, abbreviated form
```
vx = (targetX - sprite.x) * easing;
vy = (targetY - sprite.y) * easing;
sprite.x += vx;
sprite.y += vy;
```### Simple easing, short form
```
sprite.x += (targetX - sprite.x) * easing;
sprite.y += (targetY - sprite.y) * easing;
```### Simple spring, long form
```
var ax = (targetX - sprite.x) * spring;
var ay = (targetY - sprite.y) * spring;
vx += ax;
vy += ay;
vx *= friction;
vy *= friction;
sprite.x += vx;
sprite.y += vy;
```### Simple spring, abbreviated form
```
vx = (targetX - sprite.x) * spring;
vy = (targetY - sprite.y) * spring;
vx *= friction;
vy *= friction;
sprite.x += vx;
sprite.y += vy;
```### Simple spring, short form
```
vx = (targetX - sprite.x) * spring;
vy = (targetY - sprite.y) * spring;
sprite.x += (vx *= friction);
sprite.y += (vy *= friction);
```### Offset spring
```
var dx = sprite.x - fixedX;
var dy = sprite.y - fixedY;
var angle = Math.atan2(dy, dx);
var targetX = fixedX + Math.cos(angle) * springLength;
var targetY = fixedY + Math.sin(angle) * springLength;
// Spring to targetX and targetY;
```### Distance-based collision detection
```
// Starting with spriteA and spriteB
// If using a plain sprite, or obejct without a radius property
// you can use with and height divided by 2var dx = spriteB.x - spriteA.x;
var dy = spriteB.y - spriteA.y;
var dist = Math.sqrt(dx*dx + dy*dy);
if(dist < spriteA.radius + spriteB.radius)
{
// handle collision
}
```### Multiple-objects collision detection
```
var numObjects = 10;
for (var i = 0; i < numObjects; i++)
{
var objectA = objects[i];
for (var j = i+1; j < numObjects; j++)
{
var objectB = objects[j];
// perform collision detection
// between objectA and objectB
}
}
```### Coordinate rotation
```
x1 = Math.cos(angle) * x - Math.sin(angle) * y;
y1 = Math.cos(angle) * y + Math.sin(angle) * x;
```### Reverse coordiante rotation
```
x1 = Math.cos(angle) * x + Math.sin(angle) * y;
y1 = Math.cos(angle) * y - Math.sin(angle) * x;
```### Conservation of momentum in ActionScript (with a shortcut)
```js
var vxTotal = vx0 - vx1;
vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) / (ball0.mass + ball1.mass);
vx1 = vxTotal + vx0;
```### Gravity implementation
```js
function gravitate(partA, partB) {
var dx = partB.x - partA.x;
var dy = partB.y - partA.y;
var distSQ = dx*dx + dy*dy;
var dist = Math.sqrt(distSQ);
var force = partA.mass * partB.mass / distSQ;
var ax = force * dx / dist;
var ay = force * dy / dist;
partA.vx += ax / partA.mass;
partA.vy += ay / partA.mass;
partB.vx += ax / partB.mass;
partB.vy += ay / partB.mass;
}
```# Resources
- [Coding Math](https://www.youtube.com/channel/UCF6F8LdCSWlRwQm_hfA2bcQ) ([Github](https://github.com/bit101/codingmath))
- [Generative Art by Matt Pearson](https://www.manning.com/books/generative-art)
- [Math as code](https://github.com/Jam3/math-as-code)
- [BetterExplained.com](http://betterexplained.com/)
- [Essence of linear algebra](https://www.youtube.com/watch?v=kjBOesZCoqc)