Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/terrytangyuan/autoplotly

Automatic Generation of Interactive Visualizations for Statistical Results
https://github.com/terrytangyuan/autoplotly

data-visualization ggplot2 interactive-visualizations machine-learning plotly plotlyjs rstats statistics

Last synced: about 1 month ago
JSON representation

Automatic Generation of Interactive Visualizations for Statistical Results

Awesome Lists containing this project

README

        

**Note**: This package has been maintained by [@terrytangyuan](https://github.com/terrytangyuan) since 2017. Please [consider sponsoring](https://github.com/sponsors/terrytangyuan)!

[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/autoplotly)](https://cran.r-project.org/package=autoplotly)
[![DOI](https://zenodo.org/badge/116608209.svg)](https://zenodo.org/badge/latestdoi/116608209)
[![DOI](http://joss.theoj.org/papers/10.21105/joss.00657/status.svg)](https://doi.org/10.21105/joss.00657)

# autoplotly

This R package provides functionalities to automatically generate interactive visualizations for many
popular statistical results supported by [ggfortify](https://github.com/sinhrks/ggfortify)
package with [plotly.js](https://plot.ly) and [ggplot2](http://ggplot2.tidyverse.org/) style.
The generated visualizations can also be easily extended using ggplot2 syntax while staying interactive.

![autoplotly-demo](images/autoplotly-demo.gif)

You can play the examples interactively [here](https://terrytangyuan.github.io/2018/02/12/autoplotly-intro/).

## Installation

To install the current version from CRAN, use:

``` r
install.packages("autoplotly")
```

To install from development version on Github, use:

``` r
devtools::install_github("terrytangyuan/autoplotly")
```

## Example

``` r
# Automatically generate interactive plot for results produced by `stats::prcomp`
p <- autoplotly(prcomp(iris[c(1, 2, 3, 4)]), data = iris,
colour = 'Species', label = TRUE, label.size = 3, frame = TRUE)

# You can apply additional ggplot2 elements to the generated interactive plot
p +
ggplot2::ggtitle("Principal Components Analysis") +
ggplot2::labs(y = "Second Principal Components", x = "First Principal Components")

# Or apply additional plotly elements to the generated interactive plot
p %>% plotly::layout(annotations = list(
text = "Example Text",
font = list(
family = "Courier New, monospace",
size = 18,
color = "black"),
x = 0,
y = 0,
showarrow = TRUE))
```

You can `autoplotly` many other statistical results automatically with the help of [ggfortify](https://github.com/sinhrks/ggfortify). A complete list can be found [here](https://github.com/sinhrks/ggfortify#coverage).

## Reference/Citation

To cite `autoplotly` in publications, please use the following (available via `citation("autoplotly")`):

> Yuan Tang (2018). autoplotly: An R package for automatic generation of interactive visualizations for statistical results. Journal of Open Source Software, 3(24), 657, https://doi.org/10.21105/joss.00657
>
> Yuan Tang, Masaaki Horikoshi, and Wenxuan Li (2016). ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. The R Journal, 8.2, 478-489.