https://github.com/testflows/testflows-combinatorics
TestFlows.com Open-Source Software Testing Framework Combinatorics
https://github.com/testflows/testflows-combinatorics
Last synced: 3 months ago
JSON representation
TestFlows.com Open-Source Software Testing Framework Combinatorics
- Host: GitHub
- URL: https://github.com/testflows/testflows-combinatorics
- Owner: testflows
- License: other
- Created: 2023-07-19T18:10:40.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-07-20T11:50:15.000Z (over 2 years ago)
- Last Synced: 2025-09-18T12:46:01.305Z (4 months ago)
- Language: Python
- Size: 44.9 KB
- Stars: 3
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
README
`TestFlows.com Open-Source Software Testing Framework`_ Combinatorics
---------------------------------------------------------------------
.. image:: https://raw.githubusercontent.com/testflows/TestFlows-ArtWork/master/images/logo.png
:width: 20%
:alt: test bug
:align: center
The **testflows.combinatorics** module provides a convenient collection of tools
used for combinatorial testing to check different combinations of the input parameters
including calculating **covering arrays** for **pairwise** and **n-wise** testing using the `IPOG`_ algorithm.
.. contents:: Read more about:
:backlinks: top
:depth: 2
Features
********
Provides support for calculating the following:
* pure Python implementation of covering arrays based on the `IPOG`_ algorithm that can be used with any Python test framework
* permutations of input parameters
* combinations with and without replacement
* cartesian product of input iterables
* binomial coefficients
Installation
************
When used with `TestFlows.com Open-Source Software Testing Framework`_ the **testflows.combinatorics** module
comes by default as a part of the **testflows.core** module. However, if you would like to use
it with other test frameworks, it can be installed separately as follows:
.. code-block:: bash
pip3 install --update testflows.combinatorics
Covering Arrays - (Pairwise, N-wise) Testing
********************************************
The **Covering(parameters, strength=2)** or **CoveringArray(parameters, strength=2)** class allows you to calculate a covering array
for some **k** parameters having the same or different number of possible values.
The class uses `IPOG`_, an in-parameter-order, algorithm as described in `IPOG: A General Strategy for T-Way Software Testing`_ paper by Yu Lei et al.
For any non-trivial number of parameters, exhaustively testing all possibilities is not feasible.
For example, if we have **10** parameters ($k=10$) that each has **10** possible values ($v=10$), the
number of all possibilities is $v^k=10^{10} = {10}_{billion}$ thus requiring 10 billion tests for complete coverage.
Given that exhaustive testing might not be practical, a covering array could give us a much smaller
number of tests if we choose to check all possible interactions only between some fixed number
of parameters at least once, where an interaction is some specific combination, where order does not matter,
of some **t** number of parameters, covering all possible values that each selected parameter could have.
:Note:
You can find out more about covering arrays by visiting the US National Institute of Standards and Technology's (NIST)
`Introduction to Covering Arrays `_ page.
The **Covering(parameters, strength=2)** takes the following arguments
where,
* **parameters**
specifies parameter names and their possible values and
is specified as a **dict[str, list[value]]**, where *key* is the parameter name and
*value* is a list of possible values for a given parameter.
* **strength**
specifies the strength **t** of the covering array that indicates the number of parameters
in each combination, for which all possible interactions will be checked.
If **strength** equals the number of parameters, then you get the exhaustive case.
The return value of the **Covering(parameters, strength=2)** is a **CoveringArray** object that is an iterable
of tests, where each test is a dictionary, with each key being the parameter name and its value
being the parameter value.
For example,
.. code-block:: python
from testflows.combinatorics import Covering
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(Covering(parameters, strength=2))
.. code-block::
CoveringArray({'a': [0, 1], 'b': ['a', 'b'], 'c': [0, 1, 2], 'd': ['d0', 'd1']},2)[
6
a b c d
-------
0 b 2 d1
0 a 1 d0
1 b 1 d1
1 a 2 d0
0 b 0 d0
1 a 0 d1
]
Given that in the example above, the **strength=2**, all possible 2-way (pairwise)
combinations of parameters **a**, **b**, **c**, and **d** are the following:
.. code-block::
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
The six tests that make up the covering array cover all the possible interactions
between the values of each of these parameter combinations. For example, the **('a', 'b')**
parameter combination covers all possible combinations of the values that
parameters **a** and **b** can take.
Given that parameter **a** can have values **[0, 1]**, and parameter **b** can have values **['a', 'b']**
all possible interactions are the following:
.. code-block::
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
where the first element of each tuple corresponds to the value of the parameter **a**, and the second
element corresponds to the value of the parameter **b**.
Examining the covering array above, we can see that all possible interactions of parameters
**a** and **b** are indeed covered at least once. The same check can be done for other parameter combinations.
Checking Covering Array
~~~~~~~~~~~~~~~~~~~~~~~
The **check()** method of the **CoveringArray** can be used to verify that the tests
inside the covering array cover all possible t-way interactions at least once, and thus
meet the definition of a covering array.
For example,
.. code-block:: python
from testflows.combinatorics import Covering
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
tests = Covering(parameters, strength=2)
print(tests.check())
Dumping Covering Array
~~~~~~~~~~~~~~~~~~~~~~
The **CoveringArray** object implements a custom **__str__** method, and therefore it can be easily converted into
a string representation similar to the format used in the `NIST covering array tables `_.
For example,
.. code-block:: python
print(Covering(parameters, strength=2))
.. code-block::
CoveringArray({'a': [0, 1], 'b': ['a', 'b'], 'c': [0, 1, 2], 'd': ['d0', 'd1']},2)[
6
a b c d
-------
0 b 2 d1
0 a 1 d0
1 b 1 d1
1 a 2 d0
0 b 0 d0
1 a 0 d1
]
Combinations
************
The **combinations(iterable, r, with_replacement=False)** function can be used to calculate
all r-length combinations of elements in a specified iterable.
For example,
.. code-block:: python
from testflows.combinatorics import combinations
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(combinations(parameters.keys(), 2)))
.. code-block::
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
:Note:
This function is equivalent to the `itertools.combinations `_
With Replacement
~~~~~~~~~~~~~~~~
You can calculate all combinations with replacement by setting the **with_replacement** argument to **True**.
For example,
.. code-block:: python
from testflows.combinatorics import combinations
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(combinations(parameters.keys(), 2, with_replacement=True)))
.. code-block::
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'b'), ('b', 'c'), ('b', 'd'), ('c', 'c'), ('c', 'd'), ('d', 'd')]
:Note:
The **with_replacement=True** option is equivalent to `itertools.combinations_with_replacement `_
Cartesian Product
*****************
You can calculate all possible combinations of elements from different iterables using
the cartesian **product(*iterables, repeat=1)** function.
For example,
.. code-block:: python
from testflows.combinatorics import *
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(product(parameters["a"], parameters["b"])))
.. code-block::
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
:Note:
This function is equivalent to the `itertools.product `_
Permutations
************
The **permutations(iterable, r=None)** function can be used to calculate
the r-length permutations of elements for a given iterable.
:Note:
Permutations are different from **combinations**. In a combination, the elements
don't have any order, but in a permutation, the order of elements is important.
For example,
.. code-block:: python
from testflows.combinatorics import *
parameters = {"a": [0, 1], "b": ["a", "b"], "c": [0, 1, 2], "d": ["d0", "d1"]}
print(list(permutations(parameters.keys(), 2)))
.. code-block::
('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'a'), ('b', 'c'), ('b', 'd'), ('c', 'a'), ('c', 'b'), ('c', 'd'), ('d', 'a'), ('d', 'b'), ('d', 'c')]
and as we can see, both **('a', 'b')** and **('b', 'a')** elements are present.
:Note:
This function is equivalent to the `itertools.permutations `_
Binomial Coefficients
*********************
You can calculate the binomial coefficient, which is the same as
the number of ways to choose **k** items from **n** items without repetition and without order.
Binomial coefficient is defined as
.. image:: https://latex.codecogs.com/svg.image?%5Cfrac%7Bn!%7D%7Bk!(n-k!)%7D=%5Cbinom%7Bn%7D%7Bk%7D
when $k <= n$ and is zero when $k > n$
For example,
.. code-block:: python
from testflows.combinatorics import *
print(binomial(4,2))
.. code-block::
6
which means that there are 6 ways to choose 2 elements out of 4.
:Note:
This function is equivalent to the `math.comb `_
.. _`IPOG`: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1362e14b8210a766099a9516491693c0c08bc04a
.. _`IPOG: A General Strategy for T-Way Software Testing`: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1362e14b8210a766099a9516491693c0c08bc04a
.. _`TestFlows.com Open-Source Software Testing Framework`: https://testflows.com