Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tgjeon/keras-tutorials
Simple tutorials using Keras Framework
https://github.com/tgjeon/keras-tutorials
deep-learning feedforward-neural-network keras keras-tutorials tensorflow
Last synced: 1 day ago
JSON representation
Simple tutorials using Keras Framework
- Host: GitHub
- URL: https://github.com/tgjeon/keras-tutorials
- Owner: tgjeon
- Created: 2016-11-04T01:56:27.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2017-03-15T02:14:32.000Z (almost 8 years ago)
- Last Synced: 2025-01-15T13:55:32.294Z (8 days ago)
- Topics: deep-learning, feedforward-neural-network, keras, keras-tutorials, tensorflow
- Language: Jupyter Notebook
- Size: 502 KB
- Stars: 267
- Watchers: 14
- Forks: 137
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Keras-Tutorials
Introduction to deep learning based on Keras framework. These tutorials are direct ports of nlintz's [TensorFlow Tutorials](https://github.com/nlintz/TensorFlow-Tutorials).
*Basic Topics (from nlint'z github)*
* Linear Regression ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/01_linear_regression.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/01_linear_regression.ipynb))
* Logistic Regression ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/02_logistic_regression.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/02_logistic_regression.ipynb))
* Feedforward Neural Network (Multilayer Perceptron) ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/03_net.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/03_net.ipynb))
* Deep Feedforward Neural Network (Multilayer Perceptron with 2 Hidden Layers O.o) ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/04_modern_net.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/04_modern_net.ipynb))
* Convolutional Neural Network ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/05_convolutional_net.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/05_convolutional_net.ipynb))
* Denoising Autoencoder ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/06_autoencoder.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/06_autoencoder.ipynb))
* Recurrent Neural Network (LSTM) ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/07_lstm.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/07_lstm.ipynb))
* Word2vec
* TensorBoard ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/09_tensorboard.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/09_tensorboard.ipynb))
* Save and restore net ([code](https://github.com/tgjeon/Keras-Tutorials/blob/master/10_save_restore_net.py), [notebook](https://github.com/tgjeon/Keras-Tutorials/blob/master/10_save_restore_net.ipynb))*Advanced Topics*
* Image classification
* Object detection
* Super-Resolution
* Image captioning
* Semantic segmentation*Note*
* [Deep Learning Glossary](https://github.com/tgjeon/Keras-Tutorials/blob/master/DeepLearningGlossary.md) (for Korean)
: This documentation is translated from blog post on wildml.com (with author's permission)*Dependencies*
* [Keras v1.2.1](https://github.com/fchollet/keras)
* [TensorFlow v0.12](https://github.com/tensorflow/tensorflow)