Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/thejasmeetsingh/moody-llm

A LLM whose mood keeps changing.
https://github.com/thejasmeetsingh/moody-llm

asynchronous-programming fastapi genai highlightjs langchain llama3 llm ollama pydantic python3 reactjs restful-api supabase tailwindcss websockets

Last synced: about 1 month ago
JSON representation

A LLM whose mood keeps changing.

Awesome Lists containing this project

README

        

# Moody LLM

Moody LLM is an interactive chat application where a Language Model's mood keeps changing, allowing users to receive varied responses based on the LLM's current mood. The project is designed to simulate conversations with a moody AI, providing a unique and dynamic user experience.

## Overview

![](./assets/overview.png)

## Demo

[![](./assets/thumbnail.png)](https://moody-llm.s3.ap-south-1.amazonaws.com/demo.mp4)

## Getting Started

### Prerequisites:

1. [Supabase](https://supabase.com/) Account:
- Create an account on Supabase and set up a table.
- Obtain the Supabase Key and Supabase URL from the Supabase dashboard.
- Configure these details in the backend `.env` file.

**Table Schema:**
```sql
id UUID PRIMARY KEY
created_at TIMESTAMPZ NOT NULL
user_id UUID NOT NULL
message JSON NOT NULL
```

2. Ollama Installation:
- [Install](https://ollama.com/download) Ollama on your system.
- Once installed, Do the following:
* Run the command `ollama serve` to start the ollama server.
* In the new tab run, `ollama pull llama3` to pull the llama3 model in your system.

### Steps:
- Clone the project repository to your local machine.
- **Backend:**
- Navigate to the backend folder.
- Install requirements: `pip install -r requirements.txt`
- Run the backend services: `fastapi run dev`

Access backend services at: http://localhost:8000/

- **Frontend:**
- Navigate to the frontend folder.
- Install libraries: `npm install`
- Run the frontend app: `npm run dev`

Access the frontend app at: http://localhost:5173/