An open API service indexing awesome lists of open source software.

https://github.com/thevickypedia/csc790_deeplearning

Convolutional Neural Network using Jupyter Notebooks
https://github.com/thevickypedia/csc790_deeplearning

cnn convolutional-neural-networks deep-learning image-classification neural-network traffic-sign-classifier traffic-sign-recognition

Last synced: 2 months ago
JSON representation

Convolutional Neural Network using Jupyter Notebooks

Awesome Lists containing this project

README

        

# CSC790_DeepLearning

## Traffic Signs Classifier

This project was meant for learning image classification using Convolutional Neural Networks.

Additionally, this project compares results between [Adam](https://keras.io/api/optimizers/adam/) and
[SGD](https://keras.io/api/optimizers/sgd/) optimizers.

### Notebooks
- [Traffic Signs Classifier using Adam optimizer](CNN_TSR_Final-Adam.ipynb)
- [Traffic Signs Classifier using SGD optimizer](CNN_TSR_Final-Gradient_Descent.ipynb)

> - Both the notebooks use ipython to run on Jupyter
> - This project is set to create notebook specific `venv` installing requirements during startup
> - Dataset is automatically downloaded from
> [github](https://github.com/thevickypedia/open-source/tree/main/traffic-signs-data) and unzipped in real-time

### Concepts Used:
* Batch Normalization
* Data Augmentation
* Drop Out

### Optimizers
* Adam
* SGD (Stochastic Gradient Descent)

### Project Report
- [Final Report](materials/report/CSC790_TrafficSignClassifier_Final_Report.docx)
- [Presentation](materials/report/CSC790_TrafficSignClassifier_Slides.pptx)

### Results
- [Screenshots](materials/results)

### Notes and credits
- [Notes](materials/markdown/notes.md)
- [Credits](materials/markdown/credits.md)