https://github.com/thewh1teagle/sherpa-rs
Rust bindings to https://github.com/k2-fsa/sherpa-onnx
https://github.com/thewh1teagle/sherpa-rs
audio diarization embeddings rust sherpa speech-recognition
Last synced: about 1 month ago
JSON representation
Rust bindings to https://github.com/k2-fsa/sherpa-onnx
- Host: GitHub
- URL: https://github.com/thewh1teagle/sherpa-rs
- Owner: thewh1teagle
- License: mit
- Created: 2024-07-05T22:01:21.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2025-03-23T13:53:53.000Z (about 2 months ago)
- Last Synced: 2025-04-06T05:56:53.868Z (about 2 months ago)
- Topics: audio, diarization, embeddings, rust, sherpa, speech-recognition
- Language: Rust
- Homepage:
- Size: 1.44 MB
- Stars: 146
- Watchers: 6
- Forks: 22
- Open Issues: 14
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# sherpa-rs
[](https://crates.io/crates/sherpa-rs/)
[](https://github.com/thewh1teagle/sherpa-rs/blob/main/LICENSE)Rust bindings to [sherpa-onnx](https://github.com/k2-fsa/sherpa-onnx)
## Features
- Spoken language detection
- Speaker embedding (labeling)
- Speaker diarization
- Speech to text
- Text to speech
- Text punctuation
- Voice activity detection
- Audio tagging
- Keyword spotting## Supported Platforms
- Windows
- Linux
- macOS
- Android
- IOS## Install
```console
cargo add sherpa-rs
```## Build
Please see [BUILDING.md](BUILDING.md).
## Feature flags
- `cuda`: enable CUDA support
- `directml`: enable DirectML support
- `tts`: enable TTS
- `download-binaries`: use prebuilt sherpa-onnx libraries for faster builds. cached.
- `static`: use static sherpa-onnx libraries and link them statically.
- `sys`: expose raw c bindings (sys crate)## Documentation
For the documentation on `sherpa_rs`, please visit [docs.rs/sherpa_rs](https://docs.rs/sherpa-rs/latest/sherpa_rs).
For documentation on `sherpa-onnx`, refer to the [sherpa/intro.html](https://k2-fsa.github.io/sherpa/intro.html).
## Examples
See [examples](examples)
## Models
All pretrained models available at [sherpa/onnx/pretrained_models](https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html)