Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/thibauts/rbf
Radial Basis Function (RBF) interpolation
https://github.com/thibauts/rbf
Last synced: 2 months ago
JSON representation
Radial Basis Function (RBF) interpolation
- Host: GitHub
- URL: https://github.com/thibauts/rbf
- Owner: thibauts
- License: mit
- Created: 2015-01-18T23:11:20.000Z (almost 10 years ago)
- Default Branch: master
- Last Pushed: 2015-03-26T23:54:31.000Z (almost 10 years ago)
- Last Synced: 2024-11-01T01:53:06.188Z (2 months ago)
- Language: JavaScript
- Homepage:
- Size: 211 KB
- Stars: 32
- Watchers: 8
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
rbf
===
### Radial Basis Function (RBF) interpolationBuilds Radial Basis Functions for input and output values of arbitrary dimensionality using standard or custom distance functions.
Installation
------------```bash
$ npm install rbf
```Usage
-----```javascript
var RBF = require('rbf');var points = [
[0, 0],
[0, 100]
];// values could be vectors of any dimensionality.
// The computed interpolant function will return values or vectors accordingly.
var values = [
0.0,
1.0
]// RBF accepts a distance function as a third parameter :
// either one of the following strings or a custom distance function (defaults to 'linear').
//
// - linear: r
// - cubic: r**3
// - quintic: r**5
// - thin-plate: r**2 * log(r)
// - gaussian: exp(-(r/epsilon) ** 2)
// - multiquadric: sqrt((r/epsilon) ** 2 + 1)
// - inverse-multiquadric: 1 / sqrt((r/epsilon) ** 2 + 1)
//
// epsilon can be provided as a 4th parameter. Defaults to the average
// euclidean distance between points.
//
var rbf = RBF(points, values /*, distanceFunction, epsilon */);console.log(rbf([0, 50])); // => 0.5
```Examples
--------Partial derivative of a gaussian, original and interpolated with 25 random samples (linear distance function).
Lena, original and interpolated with 4000 random samples (about 6% of the original pixels, linear distance function).