Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/thinklab-sjtu/csl_retinanet_tensorflow

Code for ECCV 2020 paper: Arbitrary-Oriented Object Detection with Circular Smooth Label
https://github.com/thinklab-sjtu/csl_retinanet_tensorflow

angle-classification object-detection smooth-label tensorflow

Last synced: 27 days ago
JSON representation

Code for ECCV 2020 paper: Arbitrary-Oriented Object Detection with Circular Smooth Label

Awesome Lists containing this project

README

        

# Arbitrary-Oriented Object Detection with Circular Smooth Label

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![arXiv](http://img.shields.io/badge/cs.CV-arXiv%3A2003.05597-B31B1B.svg)](https://arxiv.org/abs/2003.05597v2)

:rocket::rocket::rocket: **News:** CSL is supported at [MMRotate](https://github.com/open-mmlab/mmrotate) :rocket::rocket::rocket:

## Abstract
This repo is based on [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf), and it is completed by [YangXue](https://yangxue0827.github.io/).

**We also recommend a tensorflow-based [rotation detection benchmark](https://github.com/yangxue0827/RotationDetection), which is led by [YangXue](https://yangxue0827.github.io/).**

## Pipeline
![2](pipeline.png)

## Circular Smooth Label
![5](CSL.png)

## Latest Performance
### DOTA1.0 (Task1)
| Model | Backbone | Training data | Val data | mAP | Model Link | Anchor | Label Mode | Reg. Loss| Angle Range | lr schd | Data Augmentation | GPU | Image/GPU | Configs |
|:------------:|:------------:|:------------:|:---------:|:-----------:|:----------:|:-----------:|:-----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| [CSL](https://arxiv.org/abs/2003.05597) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 67.38 | [Baidu Drive (g3wt)](https://pan.baidu.com/s/1nrIs-oYA53qQzlPjqYkMJQ) | H | **Gaussian (r=1, w=10)** | smooth L1 | **180** | 2x | × | 3X GeForce RTX 2080 Ti | 1 | [cfgs_res50_dota_v45.py](./libs/configs/DOTA1.0/CSL/cfgs_res50_dota_v45.py) |
| [CSL](https://arxiv.org/abs/2003.05597) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 68.73 | [Baidu Drive (3a4t)](https://pan.baidu.com/s/1yC-b9Y4ZVgVkQvpPRRLmhw) | H | **Pulse (w=1)** | smooth L1 | **180** | 2x | × | 2X GeForce RTX 2080 Ti | 1 | [cfgs_res50_dota_v41.py](./libs/configs/DOTA1.0/CSL/cfgs_res50_dota_v41.py) |

**Notice:**
**Due to the improvement of the code, the performance of this repo is gradually improving, so the experimental results in other configuration files are for reference only.**
**Please refer to [new repo](https://github.com/Thinklab-SJTU/R3Det_Tensorflow) for the latest progress.**

### Visualization
![1](demo1.png)

## My Development Environment
**docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3**
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、[opencv(cv2)](https://pypi.org/project/opencv-python/)
4、[tfplot 0.2.0](https://github.com/wookayin/tensorflow-plot) (optional)
5、tensorflow 1.13

## Download Model
### Pretrain weights
1、Please download [resnet50_v1](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz), [resnet101_v1](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz) pre-trained models on Imagenet, put it to data/pretrained_weights.
2、**(Recommend)** Or you can choose to use a better backbone, refer to [gluon2TF](https://github.com/yangJirui/gluon2TF).
* [Baidu Drive](https://pan.baidu.com/s/1GpqKg0dOaaWmwshvv1qWGg), password: 5ht9.
* [Google Drive](https://drive.google.com/drive/folders/1BM8ffn1WnsRRb5RcuAcyJAHX8NS2M1Gz?usp=sharing)

## Compile
```
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)

cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
```

## Train

1、If you want to train your own data, please note:
```
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord.py
```

2、Make tfrecord
For DOTA dataset:
```
cd $PATH_ROOT\data\io\DOTA
python data_crop.py
```

```
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
```

3、Multi-gpu train
```
cd $PATH_ROOT/tools
python multi_gpu_train.py
```

## Test
```
cd $PATH_ROOT/tools
python test_dota.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
--s (visualization, optional)
--ms (multi-scale test, optional)
```

**Notice: In order to set the breakpoint conveniently, the read and write mode of the file is' a+'. If the model of the same #VERSION needs to be tested again, the original test results need to be deleted.**

## Tensorboard
```
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
```

![3](images.png)

![4](scalars.png)

## Object Heading Detection
- [OHD-SJTU]((https://yangxue0827.github.io/OHD-SJTU.html)): Download from [here](https://yangxue0827.github.io/OHD-SJTU.html).
- [OHDet](https://github.com/SJTU-Thinklab-Det/OHDet_Tensorflow): The blue border in the bounding box represents the predicted head of the object. More detail trfer to [here](https://yangxue0827.github.io/CSL_GCL_OHDet.html).

![6](ohdet.png)

## Citation

If this is useful for your research, please consider cite.

```
@article{yang2020arbitrary,
title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
author={Yang, Xue and Yan, Junchi},
journal={European Conference on Computer Vision (ECCV)},
year={2020}
organization={Springer}
}

@article{yang2020on,
title={On the Arbitrary-Oriented Object Detection: Classification based Approaches Revisited},
author={Yang, Xue and Yan, Junchi and He, Tao},
year={2020}
}

@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={3974--3983},
year={2018}
}

```

## Reference
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet