Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/thiyangt/fformpp
FFORMPP: Feature-based FORecast Model Performance Prediction
https://github.com/thiyangt/fformpp
Last synced: 2 months ago
JSON representation
FFORMPP: Feature-based FORecast Model Performance Prediction
- Host: GitHub
- URL: https://github.com/thiyangt/fformpp
- Owner: thiyangt
- Created: 2019-02-18T03:42:52.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-12-21T10:01:36.000Z (about 1 year ago)
- Last Synced: 2024-03-06T01:49:47.096Z (10 months ago)
- Language: R
- Homepage:
- Size: 1.54 MB
- Stars: 9
- Watchers: 6
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
output: github_document
---[![Project Status: Active ? The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/thiyangt/fformpp.svg?branch=master)](https://travis-ci.org/thiyangt/fformpp.svg?branch=masterr)
[![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](https://www.repostatus.org/badges/latest/wip.svg)](https://www.repostatus.org/#wip)
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```# fformpp
## Installation
The linked packages [flutils](https://github.com/feng-li/flutils) and [movingknots](https://github.com/feng-li/movingknots) should be installed prior to the installation of fformpp.
```r
# install.packages("devtools")
devtools::install_github("thiyangt/fformpp")
library(fformpp)
```## Usage
### Following example illustrates how package functionalities work
**Load packages**
```{r}
library(methods)
library(MASS)
library(Matrix)
library(mvtnorm)
library(flutils)
library(fformpp)
library(seer)
library(parallel) #getDefaultCluster
```**Load example dataset**
```r
data(features.df)
data(forecast.error)
features_mat <- as.matrix(features.df)
forecast.error <- as.matrix(forecast.error)
```**Fit surface regression model**
```r
## This will take time. This model is saved in the package. The fitted model is saved into the package for easy references.
n <- dim(forecast.error)[1]
p <- dim(forecast.error)[2]fformpp.model <- fit_fformpp(feamat=features_mat, accmat=forecast.error,
sknots=2, aknots=2,
fix.s=0, fix.a=0, fix.shrinkage=1:p, fix.covariance=0,
fix.coefficients=0, n.iter=100,
knot.moving.algorithm="Random-Walk",
ptype=c("identity", "identity", "identity"),
prior.knots=n)```
**Predict forecast error on new data**
```{r}
data("fformpp.model")
data("forecast.error.m1")
data("features.df.m1")
predict.m1 <- predict_fformpp(fformpp.model, features.df.m1, c("ets", "arima", "rw", "rwd", "wn", "theta", "nn"), log=FALSE, final.estimate=median)
head(predict.m1)
```**Generate forecast from the model with minimum forecast error**
```{r}
library(Mcomp)
yearlym1 <- subset(M1, "yearly")
data("fcast_m1")
min.fcasterror <- individual_forecast(predicted=predict.m1,
accmat=cal_MASE,
real.error=forecast.error.m1,
tslist=yearlym1,
forecast_list = fcast_m1,
h=6)
min.fcasterror
```**Generate combination forecasts**
```{r}
library(Mcomp)
yearlym1 <- subset(M1, "yearly")
data("fcast_m1")
min.fcasterror.comb <- combination_forecast(predicted=predict.m1[1:2,],
ncomp=2,
accmat=cal_MASE,
real.error=forecast.error.m1,
tslist=yearlym1,
forecast_list = fcast_m1,
h=6, weights=FALSE, measure="mean")
min.fcasterror.comb
```