An open API service indexing awesome lists of open source software.

https://github.com/thomd/coursera-build-basic-generative-adversarial-networks

Notes on Coursera Course "Build Basic Generative Adversarial Networks"
https://github.com/thomd/coursera-build-basic-generative-adversarial-networks

coursera deep-learning gan pytorch

Last synced: 29 days ago
JSON representation

Notes on Coursera Course "Build Basic Generative Adversarial Networks"

Awesome Lists containing this project

README

        

# Build Basic Generative Adversarial Networks (GANs)

Notes from Coursera Course [Build Basic Generative Adversarial Networks (GANs)](https://www.coursera.org/learn/build-basic-generative-adversarial-networks-gans)

* [Probability Distributions](https://nbviewer.jupyter.org/github/thomd/coursera-build-basic-generative-adversarial-networks/blob/main/probability-distributions.ipynb)

## Setup

python -m venv .venv
source .venv/bin/activate
pip install jupyterlab ipywidgets
pip install torch torchvision
pip install matplotlib
pip install tqdm

## Week 1: Intro to GANs

* [Generative Models](https://nbviewer.jupyter.org/github/thomd/coursera-build-basic-generative-adversarial-networks/blob/main/generative-models.ipynb)

* [MNIST GAN in PyTorch](https://nbviewer.jupyter.org/github/thomd/coursera-build-basic-generative-adversarial-networks/blob/main/mnist-gan-pytorch.ipynb) → [Open in Google Colab](https://colab.research.google.com/github/thomd/coursera-build-basic-generative-adversarial-networks/blob/main/mnist-gan-pytorch.ipynb)

## Week 2: Deep Convolutional GANs

* [DCGANs](https://nbviewer.jupyter.org/github/thomd/coursera-build-basic-generative-adversarial-networks/blob/main/deep-convolutional-gans.ipynb)

## Week 3: Wasserstein GANs with Gradient Penalty