Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/thu-ml/3d_corruptions_ad
Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving, CVPR 2023
https://github.com/thu-ml/3d_corruptions_ad
autonomous-vehicles cvpr2023 point-cloud self-driving-car
Last synced: about 8 hours ago
JSON representation
Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving, CVPR 2023
- Host: GitHub
- URL: https://github.com/thu-ml/3d_corruptions_ad
- Owner: thu-ml
- License: mit
- Created: 2023-03-21T03:01:46.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-10-09T12:29:27.000Z (4 months ago)
- Last Synced: 2025-01-19T15:15:26.879Z (7 days ago)
- Topics: autonomous-vehicles, cvpr2023, point-cloud, self-driving-car
- Language: Python
- Homepage:
- Size: 33.4 MB
- Stars: 123
- Watchers: 6
- Forks: 16
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
This repository contains the official implementation of the paper "[Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving](https://openaccess.thecvf.com/content/CVPR2023/html/Dong_Benchmarking_Robustness_of_3D_Object_Detection_to_Common_Corruptions_CVPR_2023_paper.html)" by Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing Wei, Jun Zhu.
Accepted to CVPR2023. 🔥
![alt text](./Figure1.png)
Here we only provide the functions of all corruptions in 3D object detection. The whole project is built upon MMDetection3D and OpenPCDet with necessary modifications of its source code.
## Prerequisites
* Python (3.8.2)
* Pytorch (1.9.0)
* numpy
* imagecorruptions## How to use?
### Select severity
The severity can be selected from [1,2,3,4,5]### LiDAR corruptions
* LiDAR corruptions and corresponding function
| corruptions | function |
| :----: | :----: |
| Snow | ``snow_sim``/``snow_sim_nus`` |
| Rain | ``rain_sim`` |
| Fog | ``fog_sim`` |
| Strong Sunlight | ``scene_glare_noise`` |
| Density Decrease | ``density_dec_global`` |
| Cutout | ``cutout_local`` |
| LiDAR Crosstalk | ``lidar_crosstalk_noise`` |
| FOV Lost | ``fov_filter`` |
| Gaussian Noise | ``gaussian_noise`` |
| Uniform Noise | ``uniform_noise`` |
| Impulse Noise | ``impulse_noise`` |
| Motion Compensation | ``fulltrajectory_noise`` |
| Moving Object | ``moving_noise_bbox`` |
| Local Density Decrease | ``density_dec_bbox`` |
| Local Cutout | ``cutout_bbox`` |
| Local Gaussian Noise | ``gaussian_noise_bbox`` |
| Local Uniform Noise | ``uniform_noise_bbox`` |
| Local Impulse Noise | ``impulse_noise_bbox`` |
| Shear | ``shear_bbox`` |
| Scale | ``scale_bbox`` |
| Rotation | ``rotation_bbox`` |
| Spatial Misalignment | ``spatial_alignment_noise`` |
| Temporal Misalignment | ``temporal_alignment_noise`` |```python
# first, make sure the point cloud in a numpy array format, like N*4 or N*5
lidar = np.array([N,4])# weather-level
from .LiDAR_corruptions import rain_sim, snow_sim, fog_simlidar_cor = rain_sim(lidar, severity)
# other corruption can be the same operation, like gaussian_noise,lidar_crosstalk_noise,density_dec_global,density_dec_local,cutout_local,uniform_noise
# Note that the object-level corruption need 3D bounding box information as input, like results['ann_info']['gt_bboxes_3d'] in mmdet3d
from .LiDAR_corruptions import gaussian_noise_bbox
bbox = results['ann_info']['gt_bboxes_3d']
lidar_cor = gaussian_noise_bbox(lidar, severity,bbox)# Moreover, the temporal_alignment_noise needs ego pose information, like results['lidar2img'] in mmdet3d
from .LiDAR_corruptions import temporal_alignment_noisenoise_pose = spatial_alignment_noise(ori_pose, severity)
```
### Camera corruptions
* Camera corruptions and corresponding function
| corruptions | function |
| :----: | :----: |
| Snow | ``ImageAddSnow`` |
| Rain | ``ImageAddRain`` |
| Fog | ``ImageAddFog`` |
| Strong Sunlight | ``ImagePointAddSun`` |
| Gaussian Noise | ``ImageAddGaussianNoise`` |
| Uniform Noise | ``ImageAddUniformNoise`` |
| Impulse Noise | ``ImageAddImpulseNoise`` |
| Moving Object | ``ImageBBoxMotionBlurFrontBack``/``ImageBBoxMotionBlurLeftRight`` |
| Motion Blur | ``ImageMotionBlurFrontBack``/``ImageMotionBlurLeftRight`` |
| Shear | ``ImageBBoxOperation`` |
| Scale | ``ImageBBoxOperation`` |
| Rotation | ``ImageBBoxOperation`` |
| Spatial Misalignment | ``spatial_alignment_noise`` |
| Temporal Misalignment | ``temporal_alignment_noise`` |```python
# weather-level
from .Camera_corruptions import ImageAddSnow,ImageAddFog,ImageAddRain
snow_sim = ImageAddSnow(severity, seed=2022)
img_bgr_255_np_uint8 = results['img'] # the img in mmdet3d loading pipeline
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:,:,[2,1,0]]
image_aug_rgb = snow_sim(
image=img_rgb_255_np_uint8
)
image_aug_bgr = image_aug_rgb[:,:,[2,1,0]]
results['img'] = image_aug_bgr# other corruption can be the same operation, like ImageAddGaussianNoise,ImageAddImpulseNoise,ImageAddUniformNoise
# Note that the object-level corruption need 3D bounding box information as input, like results['gt_bboxes_3d'] in mmdet3d
from .Camera_corruptions import ImageBBoxOperation
bbox_shear = ImageBBoxOperation(severity)
img_bgr_255_np_uint8 = results['img']
bboxes_corners = results['gt_bboxes_3d'].corners
bboxes_centers = results['gt_bboxes_3d'].center
lidar2img = results['lidar2img']
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:, :, [2, 1, 0]]
c = [0.05, 0.1, 0.15, 0.2, 0.25][bbox_shear.severity - 1]
b = np.random.uniform(c - 0.05, c + 0.05) * np.random.choice([-1, 1])
d = np.random.uniform(c - 0.05, c + 0.05) * np.random.choice([-1, 1])
e = np.random.uniform(c - 0.05, c + 0.05) * np.random.choice([-1, 1])
f = np.random.uniform(c - 0.05, c + 0.05) * np.random.choice([-1, 1])
transform_matrix = torch.tensor([
[1, 0, b],
[d, 1, e],
[f, 0, 1]
]).float()image_aug_rgb = bbox_shear(
image=img_rgb_255_np_uint8,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
transform_matrix=transform_matrix,
lidar2img=lidar2img,
)
image_aug_bgr = image_aug_rgb[:, :, [2, 1, 0]]
results['img'] = image_aug_bgr```
### Examples within MMDetection3D pipeline
In the MMDetection3D pipeline, we modified the `mmdetection3d/mmdet3d/datasets/pipelines/test_time_aug.py`, the modification examples are:
```python
@PIPELINES.register_module()
class CorruptionMethods(object):
"""Test-time augmentation with corruptions."""
def __init__(self,
corruption_severity_dict=
{
'sun_sim':2,
},
):
self.corruption_severity_dict = corruption_severity_dict
if 'sun_sim' in self.corruption_severity_dict:
np.random.seed(2022)
severity = self.corruption_severity_dict['sun_sim']
self.sun_sim = ImagePointAddSun(severity)
self.sun_sim_mono = ImageAddSunMono(severity)
#for multiple cameras corruption
if 'object_motion_sim' in self.corruption_severity_dict:
# for kitti and nus
severity = self.corruption_severity_dict['object_motion_sim']
self.object_motion_sim_frontback = ImageBBoxMotionBlurFrontBack(
severity=severity,
corrput_list=[0.02 * i for i in range(1, 6)],
)
self.object_motion_sim_leftright = ImageBBoxMotionBlurLeftRight(
severity=severity,
corrput_list=[0.02 * i for i in range(1, 6)],
)
self.object_motion_sim_frontback_mono = ImageBBoxMotionBlurFrontBackMono(
severity=severity,
corrput_list=[0.02 * i for i in range(1, 6)],
)
self.object_motion_sim_leftright_mono = ImageBBoxMotionBlurLeftRightMono(
severity=severity,
corrput_list=[0.02 * i for i in range(1, 6)],
)
def __call__(self, results):
"""Call function to augment common corruptions.
"""
if 'sun_sim' in self.corruption_severity_dict:
# Common part of two datasets
img_bgr_255_np_uint8 = results['img'] # nus:list / kitti: nparrayif 'lidar2img' in results:
lidar2img = results['lidar2img'] # nus: list / kitti: nparray
use_mono_dataset = False
elif 'cam_intrinsic' in results['img_info']:
cam2img = results['img_info']['cam_intrinsic'] # for xxx-mono dataset
import numpy as np
cam2img = np.array(cam2img)
use_mono_dataset = True
else:
raise AssertionError('no lidar2img or cam_intrinsic found!')if not use_mono_dataset:
points_tensor = results['points'].tensor
# different part of nus and kitti
if type(img_bgr_255_np_uint8) == list and len(img_bgr_255_np_uint8) == 6:
# nus dataset
# only one sun
'''
nuscenes:
0 CAM_FRONT,
1 CAM_FRONT_RIGHT,
2 CAM_FRONT_LEFT,
3 CAM_BACK,
4 CAM_BACK_LEFT,
5 CAM_BACK_RIGHT
'''
img_rgb_255_np_uint8_0 = img_bgr_255_np_uint8[0][:, :, [2, 1, 0]]
lidar2img_0 = lidar2img[0]
image_aug_rgb_0, points_aug = self.sun_sim(
image=img_rgb_255_np_uint8_0,
points=points_tensor,
lidar2img=lidar2img_0,
)
image_aug_bgr_0 = image_aug_rgb_0[:, :, [2, 1, 0]]
img_bgr_255_np_uint8[0] = image_aug_bgr_0
results['img'] = img_bgr_255_np_uint8
results['points'].tensor = points_augelif type(img_bgr_255_np_uint8) == list and len(img_bgr_255_np_uint8) == 5:
# waymo dataset
# only one sun
'''
nuscenes:
0 CAM_FRONT,
1 CAM_FRONT_RIGHT,
2 CAM_FRONT_LEFT,
3 CAM_BACK,
4 CAM_BACK_LEFT,
5 CAM_BACK_RIGHT
'''
img_rgb_255_np_uint8_0 = img_bgr_255_np_uint8[0][:, :, [2, 1, 0]]
lidar2img_0 = lidar2img[0]
image_aug_rgb_0, points_aug = self.sun_sim(
image=img_rgb_255_np_uint8_0,
points=points_tensor,
lidar2img=lidar2img_0,
)
image_aug_bgr_0 = image_aug_rgb_0[:, :, [2, 1, 0]]
img_bgr_255_np_uint8[0] = image_aug_bgr_0
results['img'] = img_bgr_255_np_uint8
results['points'].tensor = points_augelse:
# kitti dataset
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:, :, [2, 1, 0]]
image_aug_rgb, points_aug = self.sun_sim(
image=img_rgb_255_np_uint8,
points=points_tensor,
lidar2img=lidar2img,
)
image_aug_bgr = image_aug_rgb[:, :, [2, 1, 0]]
results['img'] = image_aug_bgr
results['points'].tensor = points_aug
else:
# mono dataset of nus and kitti only one image
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:, :, [2, 1, 0]]
image_aug_rgb = self.sun_sim_mono(
image=img_rgb_255_np_uint8,
)
image_aug_bgr = image_aug_rgb[:, :, [2, 1, 0]]
results['img'] = image_aug_bgrif 'object_motion_sim' in self.corruption_severity_dict:
img_bgr_255_np_uint8 = results['img']
# points_tensor = results['points'].tensor
if 'lidar2img' in results:
lidar2img = results['lidar2img']
use_mono_dataset = False
elif 'cam_intrinsic' in results['img_info']:
cam2img = results['img_info']['cam_intrinsic']
import numpy as np
cam2img = np.array(cam2img)
use_mono_dataset = True
else:
raise AssertionError('no lidar2img or cam_intrinsic found!')
bboxes_corners = results['gt_bboxes_3d'].corners
bboxes_centers = results['gt_bboxes_3d'].centerif type(bboxes_corners) == int:
print(0)if type(bboxes_corners) != int:
if not use_mono_dataset:
if type(img_bgr_255_np_uint8) == list and len(img_bgr_255_np_uint8) == 6:
'''
nuscenes:
0 CAM_FRONT,
1 CAM_FRONT_RIGHT,
2 CAM_FRONT_LEFT,
3 CAM_BACK,
4 CAM_BACK_LEFT,
5 CAM_BACK_RIGHT
'''
image_aug_bgr = []
for i in range(6):
img_rgb_255_np_uint8_i = img_bgr_255_np_uint8[i][:, :, [2, 1, 0]]
lidar2img_i = lidar2img[i]if i % 3 == 0:
image_aug_rgb_i = self.object_motion_sim_frontback(
image=img_rgb_255_np_uint8_i,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
lidar2img=lidar2img_i,
# watch_img=True,
# file_path='2.jpg'
)
else:
image_aug_rgb_i = self.object_motion_sim_leftright(
image=img_rgb_255_np_uint8_i,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
lidar2img=lidar2img_i,
# watch_img=True,
# file_path='2.jpg'
)
# print('object_motion_sim_leftright:', time_inter)
image_aug_bgr_i = image_aug_rgb_i[:, :, [2, 1, 0]]
image_aug_bgr.append(image_aug_bgr_i)
results['img'] = image_aug_bgrelif type(img_bgr_255_np_uint8) == list and len(img_bgr_255_np_uint8) == 5:
'''
nuscenes:
0 CAM_FRONT,
1 CAM_FRONT_RIGHT,
2 CAM_FRONT_LEFT,
3 CAM_BACK,
4 CAM_BACK_LEFT,
5 CAM_BACK_RIGHT
'''
image_aug_bgr = []
for i in range(5):
img_rgb_255_np_uint8_i = img_bgr_255_np_uint8[i][:, :, [2, 1, 0]]
lidar2img_i = lidar2img[i]# if i % 3 == 0:
if i == 0:
image_aug_rgb_i = self.object_motion_sim_frontback(
image=img_rgb_255_np_uint8_i,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
lidar2img=lidar2img_i,
# watch_img=True,
# file_path='2.jpg'
)
else:
image_aug_rgb_i = self.object_motion_sim_leftright(
image=img_rgb_255_np_uint8_i,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
lidar2img=lidar2img_i,
# watch_img=True,
# file_path='2.jpg'
)
# print('object_motion_sim_leftright:', time_inter)
image_aug_bgr_i = image_aug_rgb_i[:, :, [2, 1, 0]]
image_aug_bgr.append(image_aug_bgr_i)
results['img'] = image_aug_bgrelse:
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:, :, [2, 1, 0]]
# points_tensor = results['points'].tensor
lidar2img = results['lidar2img']
bboxes_corners = results['gt_bboxes_3d'].corners
bboxes_centers = results['gt_bboxes_3d'].centerimage_aug_rgb = self.object_motion_sim_frontback(
image=img_rgb_255_np_uint8,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
lidar2img=lidar2img,
# watch_img=True,
# file_path='2.jpg'
)
image_aug_bgr = image_aug_rgb[:, :, [2, 1, 0]]
results['img'] = image_aug_bgrelse:
img_rgb_255_np_uint8 = img_bgr_255_np_uint8[:, :, [2, 1, 0]]
image_aug_rgb = self.object_motion_sim_frontback_mono(
image=img_rgb_255_np_uint8,
bboxes_centers=bboxes_centers,
bboxes_corners=bboxes_corners,
cam2img=cam2img,
# watch_img=True,
# file_path='2.jpg'
)
image_aug_bgr = image_aug_rgb[:, :, [2, 1, 0]]
results['img'] = image_aug_bgr
#for lidar corruptionsif 'gaussian_noise' in self.corruption_severity_dict:
import numpy as np
pl = results['points'].tensor
severity = self.corruption_severity_dict['gaussian_noise']
# aug_pl = pl[:,:3]
points_aug = gaussian_noise(pl.numpy(), severity)
pl = torch.from_numpy(points_aug)
results['points'].tensor = pl#for lidar corruptions with bbox
if 'cutout_bbox' in self.corruption_severity_dict:
import numpy as np
pl = results['points'].tensor
data = []
# data.append(results['gt_bboxes_3d'])
if 'gt_bboxes_3d' in results:
data.append(results['gt_bboxes_3d'])
else:
#waymo
data.append(results['ann_info']['gt_bboxes_3d'])
severity = self.corruption_severity_dict['cutout_bbox']
points_aug = cutout_bbox(pl.numpy(), severity,data)
pl = torch.from_numpy(points_aug)
results['points'].tensor = pl
```
Then add 'CorruptionMethods' to the test pipeline, modify the corresponding config files in `mmdetection3d/configs/`, the modification examples are:
```python
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
file_client_args=file_client_args,
pad_empty_sweeps=True,
remove_close=True),
dict(
type='CorruptionMethods',
corruption_severity_dict=
{
'background_noise':1,
# 'snow':2,
# 'gaussian_noise_points':2,
},
),
...]```
### Examples within OpenPCDet pipeline
modify `OpenPCDet/pcdet/datasets/kitti/kitti_dataset.py`, the modification examples are:
```python
class KittiDataset(DatasetTemplate):
# def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None ):
def __init__(self, dataset_cfg, class_names, corruptions, severity, training=True, root_path=None, logger=None ):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
# load corruption type from script, self.corruptions[0] save lidar corruption type, self.corruptions[1] save image corruption type
MAP = {
'rain_sim': rain_sim,
...
}
# for lidar
def get_lidar(self, idx):
try:
if "bbox" in self.corruptions[0]:
data = MAP[self.corruptions[0]](data,self.severity,idx)
else:
data = MAP[self.corruptions[0]](data,self.severity)
except:
pass
return data# for image
def get_image(self, idx):
if self.corruptions[1] == 'rain_sim':
image_add_some_func = ImageAddRain(severity=self.severity, seed=2022)
image = image_add_some_func(image, True,'./test.png')
```## Getting Started in OpenPCDet
### Implement Directly
* Use the file package in `OpenPCDet/` to directly use our modified OpenPCDet pipeline.
### Implement by modifying OpenPCDet
* Firstly, please complete the reproduction of [OpenPCDet](https://github.com/open-mmlab/OpenPCDet).
* Then, simply modify the files in folder `OpenPCDet/pcdet/datasets/kitti/` according to the one provided by us.
* Then write the script according to the sample we provided in `script/run_pvrcnn.sh` and place it under `OpenPCDet/tools/`.
## Reminder
### For LiDAR corruptions
* Among the LiDAR corruptions, KITTI-C do not include `FOV Lost`, `Motion Compensation` and `Temporal Misalignment`.
### For Camera corruptions
* The Camera corruptions algorithm was first designed based on `MMDetection3D`. Therefore, bbox related Camera corruptions (including `Strong Sunlight`、`Shear`、`Scale`、`Rotation`) cannot be directly implemented in `OpenPCDet`, due to the lack of bbox parameters required for processing. Our approach is to save the corruptions images processed in `MMDetection3D` for inference, which can also accelerate the speed of inference.
## Getting Started in MMDetection3D
### Implement Directly
* Use the file package in `TransFusion/` to directly use our modified MMDetection3D pipeline.
* The running code is in `Run_Corruptions.md` under `TransFusion/`## **Citation**
If you find it useful, please consider citing: 😊
```
@misc{dong2023benchmarking,
title={Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving},
author={Yinpeng Dong and Caixin Kang and Jinlai Zhang and Zijian Zhu and Yikai Wang and Xiao Yang and Hang Su and Xingxing Wei and Jun Zhu},
year={2023},
eprint={2303.11040},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```