Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tianyishi2001/kdtree

k-dimensional tree in Rust
https://github.com/tianyishi2001/kdtree

Last synced: about 1 month ago
JSON representation

k-dimensional tree in Rust

Awesome Lists containing this project

README

        

# kdtree

k-dimensional tree data structure implemented with const generics, used for finding k-nearest neighbours (KNN).

## Example Usage

```rust
use kdt::*;
use ordered_float::OrderedFloat;
use rand::{thread_rng, Rng};

fn main() {
let mut points = {
let mut rng = thread_rng();
(0..100)
.map(|_| {
Point([
rng.gen_range(-50.0..50.0),
rng.gen_range(-50.0..50.0),
rng.gen_range(-50.0..50.0),
])
})
.collect::>()
};
let kdt = KdTree::from_slice(&mut points);
let query = Point([0.0, 0.0, 0.0]);
let nearest = kdt
.k_nearest_neighbors(&query, 10)
.into_iter()
// each point is returned as a reference. In most use cases you don't need to `clone`
.map(|(dist, point)| (dist, point.clone()))
// by default results are sorted in descending order of squared Eucledian distance to the query point
.rev()
.collect::>();
// compute by brutal force
let mut expected = points
.into_iter()
.map(|p| (p.squared_eucledian(&query), p))
.collect::>();
expected.sort_unstable_by_key(|p| OrderedFloat(p.0));
assert_eq!(&nearest[..], &expected[..10]);
}

```