Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tianzerl/pyanime4k

An easy way to use anime4k in python
https://github.com/tianzerl/pyanime4k

anime anime4k anime4kcpp gpu-acceleration machine-learning python python3 upscale upscaling video-processing

Last synced: 15 days ago
JSON representation

An easy way to use anime4k in python

Awesome Lists containing this project

README

        

# PyAnime4K

PyAnime4K is a simple, fast and powerful Anime4K Python implementation.

## Installation
### Pip
PyAnime4K can be installed easily through `pip`.(recommended for Windows)

```shell
pip install pyanime4k
```
### Shell script
For Ubuntu you can also use `setup_wheel_ubuntu.sh` to build wheel file and install it (especially recommended for Google Colab):

```
# For Google Colab, you need to add "!" at the beginning
# "setup_wheel_ubuntu.sh" need root permission for installing dependency library by apt
wget https://github.com/TianZerL/pyanime4k/raw/master/setup_wheel_ubuntu.sh && chmod 777 setup_wheel_ubuntu.sh && ./setup_wheel_ubuntu.sh
```
## Manual installation

### Compile Anime4KCPP for pyanime4k
1. Clone [Anime4KCPP](https://github.com/TianZerL/Anime4KCPP)
2. Follow [this](https://github.com/TianZerL/Anime4KCPP/wiki/Building), and for pyanime4k, only core and c wrapper is needed. Make sure CMake option `Build_C_wrapper` is turned on, and if you want to build core and c wrapper in one file, turned on `Build_C_wrapper_with_core` (recommend)

### install pyanime4k
1. Clone the repo
2. Download from release or compile the Anime4KCPP core and Anime4KCPP C Wrapper.
3. - Copy `ac.dll` and `Anime4KCPPCore.dll` (if turned off Build_C_wrapper_with_core option of Anime4KCPP in CMake) and `opencv_world440.dll` to the pyanime4k/wrapper (Windows)
- Copy `libac.so` to the pyanime4k/wrapper (Linux)
- Copy `libac.dylib` to the pyanime4k/wrapper (macOS)
4. Enjoy

## Usages

### Upscaling Images

```python
# pathlib.Path path objects are recommended instead of strings
import pathlib

# import pyanime4k library
import pyanime4k

# display single image upscaled with Anime4KCPP
pyanime4k.show_upscaled_image(pathlib.Path('image1.png'))

# upscale a single image
pyanime4k.upscale_images(pathlib.Path('image1.png'))

# upscale a list of images
images = [
pathlib.Path('image1.png'),
pathlib.Path('image2.png')
]

pyanime4k.upscale_images(
input_paths=images,
output_path=pathlib.Path('./output')
)
```

### Upscaling Videos

```python
# pathlib.Path path objects are recommended instead of strings
import pathlib

# import pyanime4k library
import pyanime4k

# upscale a single video file
pyanime4k.upscale_videos(pathlib.Path('video1.mp4'))

# upscale multiple files
videos = [
pathlib.Path('video1.mp4'),
pathlib.Path('video2.mp4')
]

pyanime4k.upscale_videos(
input_paths=videos,
output_path=pathlib.Path('./output')
)
```

### Preview a video with OpenCV

```python
from pyanime4k import ac
import cv2

video = cv2.VideoCapture(r"F:\Temp\Anime4K\P1-1.m4v")
a = ac.AC(
managerList=ac.ManagerList([ac.OpenCLACNetManager(pID=0, dID=0)]),
type=ac.ProcessorType.OpenCL_ACNet
)
while True:
v,f = video.read()
if not v:
break
# the default color format of OpenCV is BGR
f = a.proccess_image_with_numpy(f)
cv2.imshow("video", f)
cv2.waitKey(1)

```

### Specify GPU

You can specify GPU for processing if you have more than one GPU

```python
from pyanime4k import ac

# print GPU list to get pID and dID of each GPU
ac.AC.list_GPUs()

# check GPU support
flag, info = ac.AC.check_GPU_support(GPGPU=ac.GPGPUModel.AC_OpenCL, pID=1, dID=0)

# init AC core with pID and dID
if flag:
a = ac.AC(
managerList=ac.ManagerList([ac.OpenCLACNetManager(pID=0, dID=0)]),
type=ac.ProcessorType.OpenCL_ACNet
)

# print GPU information
print(info)

# or to check the current processor information
print(a.get_processor_info())

```

### Manual Upscaling

You may also create a low-level AC object and handle each of the steps manually.

```python
from pyanime4k import ac
import pyanime4k

parameters = ac.Parameters()
# enable HDN for ACNet
parameters.HDN = True

a = ac.AC(
managerList=ac.ManagerList([ac.OpenCLACNetManager(pID=0, dID=0)]),
type=ac.ProcessorType.OpenCL_ACNet
)

# load image from file
a.load_image(r"D:\Temp\anime4k\p1.png")

# start processing
a.process()

# preview upscaled image
a.show_image()

# save image to file
a.save_image('image1_output.png')

# from PIL and numpy
import numpy as np
from PIL import Image

img = Image.open(r"D:\Temp\anime4k\p1.png").convert("RGB")
img = np.array(img)

# BGR, RGB and YUV444 is supported
a.load_image_from_numpy(img, input_type=ac.AC_INPUT_RGB)

# start processing
a.process()

# save image to numpy array
new_img = a.save_image_to_numpy()

new_img = Image.fromarray(new_img)
new_img.show()

# from OpenCV
import cv2

img = cv2.imread(r"D:\Temp\anime4k\p1.png")

a.load_image_from_numpy(img,input_type=ac.AC_INPUT_BGR)
a.process()
img = a.save_image_to_numpy()

cv2.imshow("opencv", img)
cv2.waitKey(0)

# save image to file
a.save_image('image1_output_1.png')

# let's process video
a.set_video_mode(True)

# load video file
a.load_video(r"D:\Temp\anime4k\P1-1.m4v")

# specify output video file name
# note that this needs to be done before processing starts
a.set_save_video_info("output_tmp.mp4", codec=ac.Codec.MP4V)

# start processing with progress
a.process_with_progress()

# process with callback function
def print_progress_time(v, t):
print("%.2f%% elapsed: %.2f remaining: %.2f" % (v * 100, t, t/v - t), end="\r")

'''
#or
def print_progress(v):
print("%.2f%%" % (v * 100), end="\r")
'''

# load video file
a.load_video(r"D:\Temp\anime4k\P1-1.m4v")

# specify output video file name
# note that this needs to be done before processing starts
a.set_save_video_info("output_tmp_.mp4", codec=ac.Codec.MP4V)

# start processing with progress value and time callback
a.process_with_progress_time_callback(print_progress_time)

'''
#or
# start processing with progress value callback
a.process_with_progress_callback(print_progress)
'''

# save video to file
a.save_video()

# merge audio and auto delete tmp file
pyanime4k.migrate_audio_streams("output_tmp.mp4",r"D:\Temp\anime4k\P1-1.m4v","output.mp4")
```

### Process a video with OpenCV

```python
from pyanime4k import ac
import cv2
import time
import threading
import queue

# init VideoCapture and VideoWriter
videoReader = cv2.VideoCapture(r"D:\Temp\anime4k\P1-1.m4v")
fps = videoReader.get(cv2.CAP_PROP_FPS)
h = videoReader.get(cv2.CAP_PROP_FRAME_HEIGHT)
w = videoReader.get(cv2.CAP_PROP_FRAME_WIDTH)
videoWriter = cv2.VideoWriter(
"output.mp4",
cv2.VideoWriter_fourcc("m", "p", "4", "v"),
fps,
(int(w * 2), int(h * 2)),
)

# init Anime4KCPP
a = ac.AC(
managerList=ac.ManagerList([ac.OpenCLACNetManager(pID=0, dID=0)]),
type=ac.ProcessorType.OpenCL_ACNet
)

# frame queue
q = queue.Queue(12)

# write frames to disk
def writeFrames():
while True:
f = q.get()
videoWriter.write(f)
q.task_done()

# write frames in new thread
t = threading.Thread(target=writeFrames, daemon=True)
t.start()

s = time.time()

while True:
v, f = videoReader.read()
if not v:
break
f = a.proccess_image_with_numpy(f)
q.put(f)

e = time.time()
print("time:", e - s, "s")

# wait for finished
q.join()

videoWriter.release()

```

## Other Anime4K Implementations

- Go
- [TianZerL/Anime4KGo](https://github.com/TianZerL/Anime4KGo)
- C++
- [TianZerL/Anime4KCPP](https://github.com/TianZerL/Anime4KCPP)
- C#
- [shadow578/Anime4kSharp](https://github.com/shadow578/Anime4kSharp)
- [net2cn/Anime4KSharp](https://github.com/net2cn/Anime4KSharp)
- GLSL
- [bloc97/Anime4K](https://github.com/bloc97/Anime4K)
- Rust
- [andraantariksa/Anime4K-rs](https://github.com/andraantariksa/Anime4K-rs)