https://github.com/tillbeemelmanns/cityscapes-to-coco-conversion
Cityscapes to CoCo Format Conversion Tool for Mask-RCNN and Detectron
https://github.com/tillbeemelmanns/cityscapes-to-coco-conversion
cityscapes cityscapes-dataset coco-conversion coco-format cocodataset mask-rcnn
Last synced: 7 months ago
JSON representation
Cityscapes to CoCo Format Conversion Tool for Mask-RCNN and Detectron
- Host: GitHub
- URL: https://github.com/tillbeemelmanns/cityscapes-to-coco-conversion
- Owner: TillBeemelmanns
- Created: 2020-01-10T15:07:31.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-03-21T16:45:00.000Z (over 2 years ago)
- Last Synced: 2025-03-25T18:40:07.265Z (7 months ago)
- Topics: cityscapes, cityscapes-dataset, coco-conversion, coco-format, cocodataset, mask-rcnn
- Language: Python
- Homepage:
- Size: 5.44 MB
- Stars: 87
- Watchers: 1
- Forks: 15
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Cityscapes to CoCo Conversion Tool

This script allows to convert the [Cityscapes Dataset](https://www.cityscapes-dataset.com/) to Mircosoft's [CoCo Format](http://cocodataset.org/). The code heavily relies on Facebook's [Detection Repo](https://github.com/facebookresearch/Detectron/blob/master/tools/convert_cityscapes_to_coco.py) and [Cityscapes Scripts](https://github.com/mcordts/cityscapesScripts).
The converted annotations can be easily used for [Mask-RCNN](https://github.com/matterport/Mask_RCNN) or other deep learning projects.
## Folder Structure
Download the Cityscapes Dataset and organize the files in the following structure. Create an empty `annotations` directory.
```
data/
└── cityscapes
├── annotations
├── gtFine
│ ├── test
│ ├── train
│ └── val
└── leftImg8bit
├── test
├── train
└── val
main.py
inspect_coco.py
README.md
requirements.txt
```
## Installation
```
pip install -r requirements.txt
```
## Run
To run the conversion execute the following
```
python main.py --dataset cityscapes --datadir data/cityscapes --outdir data/cityscapes/annotations
```
In order to run the visualization of the CoCo dataset you may run
```
python inspect_coco.py --coco_dir data/cityscapes
```
## Output
 