Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/timbeurskens/rsbdd
A Reduced-order Binary Decision Diagram (RoBDD) SAT solver written in Rust
https://github.com/timbeurskens/rsbdd
binary-decision-diagrams boolean-satisfiability np-complete sat-solver
Last synced: 3 months ago
JSON representation
A Reduced-order Binary Decision Diagram (RoBDD) SAT solver written in Rust
- Host: GitHub
- URL: https://github.com/timbeurskens/rsbdd
- Owner: timbeurskens
- Created: 2021-12-11T14:44:37.000Z (almost 3 years ago)
- Default Branch: master
- Last Pushed: 2024-04-18T08:00:27.000Z (7 months ago)
- Last Synced: 2024-05-22T19:32:14.750Z (6 months ago)
- Topics: binary-decision-diagrams, boolean-satisfiability, np-complete, sat-solver
- Language: Rust
- Homepage:
- Size: 316 KB
- Stars: 6
- Watchers: 1
- Forks: 2
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-rust-formalized-reasoning - RsBDD - Reduced-order Binary Decision Diagram (RoBDD) SAT solver. (Projects / Provers and Solvers)
README
# RsBDD
[![Rust](https://github.com/timbeurskens/rsbdd/actions/workflows/rust.yml/badge.svg)](https://github.com/timbeurskens/rsbdd/actions/workflows/rust.yml)
_Solving satisfiability problems in Rust_
## Installation
1) Make sure to install the [Rust toolchain](https://www.rust-lang.org/tools/install).
2) Clone the latest version of this repository:
```
$ git clone [email protected]:timbeurskens/rsbdd.git
```3) Build and install the RsBDD tools:
```
$ cd rsbdd
$ cargo install --bins --path .
```The following tools will be available after installing the RsBDD package:
- `max_clique_gen`
- `n_queens_gen`
- `random_graph_gen`
- `rsbdd`
- `sudoku_gen`## Syntax
### Comments
Characters contained within "..." (excluding the " char itself) are regarded as comments and can be placed at any point
in the formula.### Constants
The most basic building blocks of the syntax are 'variables' and 'constants'. A constant can be either 'true' or '
false'. A variable can accept either a 'true' or 'false' value after evaluation depending on its environment.```
true
false
```### Variables
A variable is a single word starting with a non-digit character. Examples of good variable names are:
```
a
a'
alpha
_x
a1
hello_world
```### Negation
A variable, constant, or sub-formula can be negated using the negation operator. This operator can be expressed by
either `!`, `-`, or `not`.```
not true
-false
!variable
```### Binary operators
RsBDD supports the most common, and some uncommon binary operators, such as conjunction, disjunction, implication and
bi-implication.Most operators have a symbolic and textual representation, e.g. `and` or `&`.
| Operator | Option 1 | Option 2 |
|--------------------|-------------------|----------|
| Conjunction | `and` | `&` |
| Disjunction | `or` | `\|` |
| Implication | `implies` or `in` | `=>` |
| Bi-implication | `iff` or `eq` | `<=>` |
| Exlusive or | `xor` | `^` |
| Joint denial | `nor` | N.A. |
| Alternative denial | `nand` | N.A. |```
true or false
true | false
a | b
a & b
a and b
a => b
hello <=> world
on ^ off
```### Composition
Larger formulae can be composed using left and right parentheses: `(`, `)`:
```
a | (a & b)
(a)
((a))
!(a & b)
(a & b) | (b & c)
```### If-then-else
A simplification of a common expression `(a => b) & ((!a) => c)` can be made using the ternary if-then-else (ite)
operator.```
if a then b else c
if exists a # a <=> b then b <=> c else false | c
```### Quantifiers
The RsBDD supports universal and existential quantification using the `exists` and `forall`/`all`
keywords: `{forall|exists} var_1, var_2, .., var_n # {subformula}````
forall a # true
forall a # a | b
forall a, b # exists c # (c | a) & (c | b)
```### Counting
For some problems it can be beneficial to express properties relating to the number of true or false variables, e.g. "at
least 2 of the 4 properties must hold".The counting operator (`[]`) in combination with five new equality and inequality operators (`=`, `<=`, `>=`, `<`, `>`)
can be used to concisely express these properties._Note:_ like most operators, the counting operator can be expressed using logic primitives, but this operator simplifies
the expression significantly.A counting comparison can either be made by comparing a set of expressions to a given constant, or an other set of
expressions.```
"exactly one of a, b, and c holds"
[a, b, c] = 1"there are strictly less true expressions in a, b, c than d, e, f"
[a, b, c] < [d, e, f]
```Counting comparison also allows us to specify optimization problems.
Example: the max-clique problem can be described as a clique problem, such that
for all satisfiable cliques, the reported result is the largest.```
-(a & f) &
-(a & g) &-(b & d) &
-(b & e) &-(c & e) &
-(c & g) &forall _a,_b,_c,_d,_e,_f,_g # (
-(_a & _f) &
-(_a & _g) &
-(_b & _d) &
-(_b & _e) &
-(_c & _e) &
-(_c & _g)
) => [a,b,c,d,e,f,g] >= [_a,_b,_c,_d,_e,_f,_g]
```### Fixed points
The rsbdd language supports least-fixpoint (`lfp` / `mu`) and greatest-fixpoint (`gfp` / `nu`) operations to find a
respectively minimal or maximal solution by repeatedly applying a given transformer function until the solution is
stable.Only monotonic transformer functions are guaranteed to terminate. Termination of fixed point operations are not checked
and will run indefinatedly if not handled correctly.Its basic properties are defined as follows.
```
gfp X # X <=> true
lfp X # X <=> falsenu X # ... <=> gfp X # ...
mu X # ... <=> lfp X # ...gfp/lfp X # a <=> a
gfp/lfp X # true <=> true
gfp/lfp X # false <=> false
```### Parse-tree display
Adding the `-p {path}` argument to `rsbdd` constructs a graphviz graph of the parse-tree. This can be used to for
introspection of the intended formula, or for reporting purposes. An example of the parse-tree output
for `exists b,c # a | (b ^ c)` is displayed below.![parse tree](docs/images/parsetree.svg)
### Experimental and/or upcoming features
Currently the RsBDD language relies heavily on logical primitives. Integer arithmetic could be expressed by manually
introducing the primitive 'bits' of a number. Rewrite rules could significantly simplify this process by introducting
domains other than boolean variables. Embedding rewrite rules in the BDD could prove to be a challenge.## Examples
### Example 1: transitivity of the `>=` operator
```
([a1,a2,a3,a4] >= [b1,b2,b3,b4] & [b1,b2,b3,b4] >= [c1,c2,c3,c4]) => [a1,a2,a3,a4] >= [c1,c2,c3,c4]
```### Example 2: the 4 queens problem
The famous n-queens problem can be expressed efficiently in the RsBDD language.
The example below shows a 4-queens variant, which can be solved in roughly 15 milliseconds. The library contains a
generator for arbitrary n-queens problems.
At this point, the largest verified problem size is n=8, which reports all solutions in less than 20 minutes on modern
hardware.
The explosive nature of the problem makes n=9 an infeasable problem. Further optimizations (such as multi-processor
parallellism, or vertex ordering) could decrease the run-time in the future.```
"every row must contain exactly one queen"
[_0x0, _0x1, _0x2, _0x3] = 1 &
[_1x0, _1x1, _1x2, _1x3] = 1 &
[_2x0, _2x1, _2x2, _2x3] = 1 &
[_3x0, _3x1, _3x2, _3x3] = 1 &"every column must contain exactly one queen"
[_0x0, _1x0, _2x0, _3x0] = 1 &
[_0x1, _1x1, _2x1, _3x1] = 1 &
[_0x2, _1x2, _2x2, _3x2] = 1 &
[_0x3, _1x3, _2x3, _3x3] = 1 &"every diagonal must contain at most one queen"
[_0x0] <= 1 &
[_0x1, _1x0] <= 1 &
[_0x2, _1x1, _2x0] <= 1 &
[_0x3, _1x2, _2x1, _3x0] <= 1 &
[_1x3, _2x2, _3x1] <= 1 &
[_2x3, _3x2] <= 1 &
[_3x3] <= 1 &"the other diagonal"
[_0x3] <= 1 &
[_0x2, _1x3] <= 1 &
[_0x1, _1x2, _2x3] <= 1 &
[_0x0, _1x1, _2x2, _3x3] <= 1 &
[_1x0, _2x1, _3x2] <= 1 &
[_2x0, _3x1] <= 1 &
[_3x0] <= 1
```Running this example with the following arguments yields a truth-table showing the queen configuration(s) on a 4x4 chess
board.```bash
rsbdd -i examples/4_queens.txt -t -ft
```| _0x0 | _0x1 | _0x2 | _0x3 | _1x0 | _1x1 | _1x2 | _1x3 | _2x0 | _2x1 | _2x2 | _2x3 | _3x0 | _3x1 | _3x2 | _3x3 | * |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| False | False | True | False | True | False | False | False | False | False | False | True | False | True | False | False | True |
| False | True | False | False | False | False | False | True | True | False | False | False | False | False | True | False | True |## CLI Usage
### rsbdd
```
A BDD-based SAT solverUsage: rsbdd [OPTIONS] [FILE]
Arguments:
[FILE] The input file containing a logic formula in rsbdd formatOptions:
-p, --parsetree Write the parse tree in dot format to the specified file
-t, --truthtable Print the truth table to stdout
-d, --dot Write the bdd to a dot graphviz file
-m, --model Compute a single satisfying model as output
-v, --vars Print all satisfying variables leading to a truth value
-f, --filter Only show true or false entries in the output [default: Any]
-c, --retain-choices Only retain choice variables when filtering [default: Any]
-b, --benchmark Repeat the solving process n times for more accurate performance reports
-g, --plot Use GNUPlot to plot the runtime distribution
-e, --evaluate Parse the formula as string
-o, --ordering Read a custom variable ordering from file
-r, --export-ordering Export the automatically derived ordering to stdout
-h, --help Print help
-V, --version Print version```
### max_clique_gen
```
Converts a graph into a max-clique specificationUsage: max_clique_gen [OPTIONS] [INPUT] [OUTPUT]
Arguments:
[INPUT] Input file graph in csv edge-list format
[OUTPUT] The output rsbdd fileOptions:
-u, --undirected Use undirected edges (test for both directions in the set-complement operation)
-a, --all Construct a satisfiable formula for all cliques
-h, --help Print help
-V, --version Print version```
### random_graph_gen
```
Generates a random edge list formatted graphUsage: random_graph_gen [OPTIONS] [VERTICES] [EDGES]
Arguments:
[VERTICES] The number of vertices in the output graph
[EDGES] The number of edges in the output graphOptions:
-o, --output The output filename (or stdout if not provided)
-u, --undirected Use undirected edges (test for both directions in the set-complement operation)
--complete Construct a complete graph
-d, --dot Output in dot (GraphViz) format
--convert If this argument is provided, the provided edge-list will be used to generate a graph
-c, --colors Generate a graph-coloring problem with N colors
-h, --help Print help
-V, --version Print version```
### n_queens_gen
```
Generates n-queen formulae for the SAT solverUsage: n_queens_gen [OPTIONS] [OUTPUT]
Arguments:
[OUTPUT] The output rsbdd fileOptions:
-n, --queens The number of queens [default: 4]
-h, --help Print help
-V, --version Print version```
### sudoku_gen
```
Generates a random edge list formatted graphUsage: sudoku_gen [OPTIONS] [INPUT] [OUTPUT]
Arguments:
[INPUT] The input sudoku file
[OUTPUT] The output rsbdd fileOptions:
-r, --root The root value of the puzzle. Typically the square root of the largest possible number [default: 3]
-h, --help Print help
-V, --version Print version```