Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/timbmg/vae-cvae-mnist
Variational Autoencoder and Conditional Variational Autoencoder on MNIST in PyTorch
https://github.com/timbmg/vae-cvae-mnist
cvae deep-learning latent-variable-models mnist pytorch vae variational-autoencoder
Last synced: 12 days ago
JSON representation
Variational Autoencoder and Conditional Variational Autoencoder on MNIST in PyTorch
- Host: GitHub
- URL: https://github.com/timbmg/vae-cvae-mnist
- Owner: timbmg
- Created: 2018-02-26T12:54:18.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-07-25T10:48:03.000Z (4 months ago)
- Last Synced: 2024-10-12T18:31:05.365Z (about 1 month ago)
- Topics: cvae, deep-learning, latent-variable-models, mnist, pytorch, vae, variational-autoencoder
- Language: Python
- Homepage:
- Size: 1.11 MB
- Stars: 579
- Watchers: 8
- Forks: 104
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Variational Autoencoder & Conditional Variational Autoenoder on MNIST
VAE paper: [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114)
CVAE paper: [Semi-supervised Learning with Deep Generative Models](https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html)
---
In order to run _conditional_ variational autoencoder, add `--conditional` to the the command. Check out the other commandline options in the code for hyperparameter settings (like learning rate, batch size, encoder/decoder layer depth and size).---
## Results
All plots obtained after 10 epochs of training. Hyperparameters accordning to default settings in the code; not tuned.
### z ~ q(z|x) and q(z|x,c)
The modeled latent distribution after 10 epochs and 100 samples per digit.VAE | CVAE
--- | ---
|### p(x|z) and p(x|z,c)
Randomly sampled z, and their output. For CVAE, each c has been given as input once.VAE | CVAE
--- | ---
|