Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/timsainb/automutualinformation
Auto Mutual Information (Sequential Mutual Information) for temporal data.
https://github.com/timsainb/automutualinformation
Last synced: 3 months ago
JSON representation
Auto Mutual Information (Sequential Mutual Information) for temporal data.
- Host: GitHub
- URL: https://github.com/timsainb/automutualinformation
- Owner: timsainb
- License: mit
- Created: 2022-02-21T18:45:24.000Z (almost 3 years ago)
- Default Branch: master
- Last Pushed: 2022-02-28T14:03:39.000Z (almost 3 years ago)
- Last Synced: 2024-10-08T01:08:51.555Z (3 months ago)
- Language: Jupyter Notebook
- Size: 2.83 MB
- Stars: 3
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![CI](https://github.com/timsainb/automutualinformation/actions/workflows/python-package.yml/badge.svg)
Auto Mutual Information
==============================Auto Mutual Information (Sequential Mutual Information) for temporal data.
Auto mutual information can be treated as the equivalent of autocorrelation for symbolic data.
### Installation
The python package is installable via pip.
`pip install automutualinformation`
### Quick Start
```python
from automutualinformation import sequential_mutual_information as smi
(MI, MI_var), (shuff_MI, shuff_MI_var) = smi(
[signal], distances=np.arange(1,100)
)
```Run an example notebook in Colab:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/timsainb/automutualinformation/blob/master/notebooks/1.1-example-AutoMI-with-pink-noise.ipynb)### Documentation
Documentation and usage information is currently available in jupyter notebooks in the notebooks folder.
### Citation
If you use this package, please cite the following paper:
```
@article {NBC2020,
author = {Sainburg, Tim and Mai, Anna and Gentner, Timothy Q.},
title = {Long-range sequential dependencies precede complex syntactic production in language acquisition},
journal = {Proceedings of the Royal Society B},
doi = {https://dx.doi.org/10.1098/rspb.2021.2657},
year = 2022,
}
```### TODO
- add additional parameters exampleFor more info references see:
- [Mutual information functions versus correlation functions. W Li. (1990). Journal of Statistical Physics](https://doi.org/10.1007/BF01025996)
- [Critical Behavior in Physics and Probabilistic Formal Languages. HW Lin, M Tegmark (2017) Entropy](https://doi.org/10.3390/e19070299)
- [Parallels in the sequential organization of birdsong and human speech. T Sainburg, B Thielman, M Thielk, TQ Gentner, (2019) Nature Communications](https://doi.org/10.1038/s41467-019-11605-y)
- [Long-range sequential dependencies precede complex syntactic production in language acquisition. T Sainburg, A Mai, TQ Gentner. Proceedings of the Royal Society B](https://dx.doi.org/10.1098/rspb.2021.2657)