Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/timsainb/python_spectrograms_and_inversion
Spectrograms, MFCCs, and Inversion Demo in a jupyter notebook
https://github.com/timsainb/python_spectrograms_and_inversion
Last synced: 2 months ago
JSON representation
Spectrograms, MFCCs, and Inversion Demo in a jupyter notebook
- Host: GitHub
- URL: https://github.com/timsainb/python_spectrograms_and_inversion
- Owner: timsainb
- Created: 2016-10-06T01:44:57.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2019-07-15T13:39:08.000Z (over 5 years ago)
- Last Synced: 2024-10-14T15:42:05.577Z (3 months ago)
- Language: Jupyter Notebook
- Size: 6.43 MB
- Stars: 164
- Watchers: 8
- Forks: 65
- Open Issues: 3
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
### Spectrograms, mel scaling, and Inversion demo in jupyter/ipython
This is just a bit of code that shows you how to make a spectrogram/sonogram in python using numpy, scipy, and a few functions written by Kyle Kastner. I also show you how to invert those spectrograms back into wavform, filter those spectrograms to be mel-scaled, and invert those spectrograms as well. This should prove to be a useful tool for those interested in generative modelling (as I am). For example, running spectrograms through an LSTM, VAE, GAN, VAE-GAN, or experimenting with your own audio/waveform models. Check out the LibriSpeech dataset. for a 1000 hr dataset of transcripted speech from open source audio books.
- Made by Tim Sainburg and Marvin Thielk```python
# iPython specific stuff
%matplotlib inline
import IPython.display
from ipywidgets import interact, interactive, fixed# Packages we're using
import numpy as np
import matplotlib.pyplot as plt
import copy
from scipy.io import wavfile
from scipy.signal import butter, lfilter
import scipy.ndimage
```### Make Spectrogram
(Skip over this for now and take a look at the output below)```python
# Most of the Spectrograms and Inversion are taken from: https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fedef butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, adef butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return ydef overlap(X, window_size, window_step):
"""
Create an overlapped version of X
Parameters
----------
X : ndarray, shape=(n_samples,)
Input signal to window and overlap
window_size : int
Size of windows to take
window_step : int
Step size between windows
Returns
-------
X_strided : shape=(n_windows, window_size)
2D array of overlapped X
"""
window_size, window_step = map(int, (window_size, window_step))
if window_size % 2 != 0:
raise ValueError("Window size must be even!")
# Make sure there are an even number of windows before stridetricks
append = np.zeros((window_size - len(X) % window_size))
X = np.hstack((X, append))ws = window_size
ss = window_step
a = Xvalid = len(a) - ws
nw = (valid) // ss
out = np.ndarray((nw,ws),dtype = a.dtype)for i in range(nw):
# "slide" the window along the samples
start = i * ss
stop = start + ws
out[i] = a[start : stop]return out
def stft(X, fftsize=128, step=65, mean_normalize=True, real=False,
compute_onesided=True):
"""
Compute STFT for 1D real valued input X
"""
if real:
local_fft = np.fft.rfft
cut = -1
else:
local_fft = np.fft.fft
cut = None
if compute_onesided:
cut = fftsize // 2
if mean_normalize:
X -= X.mean()X = overlap(X, fftsize, step)
size = fftsize
win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
X = X * win[None]
X = local_fft(X)[:, :cut]
return Xdef pretty_spectrogram(d,log = True, thresh= 5, fft_size = 512, step_size = 64):
"""
creates a spectrogram
log: take the log of the spectrgram
thresh: threshold minimum power for log spectrogram
"""
specgram = np.abs(stft(d, fftsize=fft_size, step=step_size, real=False,
compute_onesided=True))
if log == True:
specgram /= specgram.max() # volume normalize to max 1
specgram = np.log10(specgram) # take log
specgram[specgram < -thresh] = -thresh # set anything less than the threshold as the threshold
else:
specgram[specgram < thresh] = thresh # set anything less than the threshold as the threshold
return specgram# Also mostly modified or taken from https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe
def invert_pretty_spectrogram(X_s, log = True, fft_size = 512, step_size = 512/4, n_iter = 10):
if log == True:
X_s = np.power(10, X_s)X_s = np.concatenate([X_s, X_s[:, ::-1]], axis=1)
X_t = iterate_invert_spectrogram(X_s, fft_size, step_size, n_iter=n_iter)
return X_tdef iterate_invert_spectrogram(X_s, fftsize, step, n_iter=10, verbose=False):
"""
Under MSR-LA License
Based on MATLAB implementation from Spectrogram Inversion Toolbox
References
----------
D. Griffin and J. Lim. Signal estimation from modified
short-time Fourier transform. IEEE Trans. Acoust. Speech
Signal Process., 32(2):236-243, 1984.
Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory
Model Inversion for Sound Separation. Proc. IEEE-ICASSP,
Adelaide, 1994, II.77-80.
Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal
Estimation from Modified Short-Time Fourier Transform
Magnitude Spectra. IEEE Transactions on Audio Speech and
Language Processing, 08/2007.
"""
reg = np.max(X_s) / 1E8
X_best = copy.deepcopy(X_s)
for i in range(n_iter):
if verbose:
print("Runnning iter %i" % i)
if i == 0:
X_t = invert_spectrogram(X_best, step, calculate_offset=True,
set_zero_phase=True)
else:
# Calculate offset was False in the MATLAB version
# but in mine it massively improves the result
# Possible bug in my impl?
X_t = invert_spectrogram(X_best, step, calculate_offset=True,
set_zero_phase=False)
est = stft(X_t, fftsize=fftsize, step=step, compute_onesided=False)
phase = est / np.maximum(reg, np.abs(est))
X_best = X_s * phase[:len(X_s)]
X_t = invert_spectrogram(X_best, step, calculate_offset=True,
set_zero_phase=False)
return np.real(X_t)def invert_spectrogram(X_s, step, calculate_offset=True, set_zero_phase=True):
"""
Under MSR-LA License
Based on MATLAB implementation from Spectrogram Inversion Toolbox
References
----------
D. Griffin and J. Lim. Signal estimation from modified
short-time Fourier transform. IEEE Trans. Acoust. Speech
Signal Process., 32(2):236-243, 1984.
Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory
Model Inversion for Sound Separation. Proc. IEEE-ICASSP,
Adelaide, 1994, II.77-80.
Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal
Estimation from Modified Short-Time Fourier Transform
Magnitude Spectra. IEEE Transactions on Audio Speech and
Language Processing, 08/2007.
"""
step = int(step)
size = int(X_s.shape[1] // 2)
wave = np.zeros((X_s.shape[0] * step + size))
# Getting overflow warnings with 32 bit...
wave = wave.astype('float64')
total_windowing_sum = np.zeros((X_s.shape[0] * step + size))
win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))est_start = int(size // 2) - 1
est_end = est_start + size
for i in range(X_s.shape[0]):
wave_start = int(step * i)
wave_end = wave_start + size
if set_zero_phase:
spectral_slice = X_s[i].real + 0j
else:
# already complex
spectral_slice = X_s[i]# Don't need fftshift due to different impl.
wave_est = np.real(np.fft.ifft(spectral_slice))[::-1]
if calculate_offset and i > 0:
offset_size = size - step
if offset_size <= 0:
print("WARNING: Large step size >50\% detected! "
"This code works best with high overlap - try "
"with 75% or greater")
offset_size = step
offset = xcorr_offset(wave[wave_start:wave_start + offset_size],
wave_est[est_start:est_start + offset_size])
else:
offset = 0
wave[wave_start:wave_end] += win * wave_est[
est_start - offset:est_end - offset]
total_windowing_sum[wave_start:wave_end] += win
wave = np.real(wave) / (total_windowing_sum + 1E-6)
return wavedef xcorr_offset(x1, x2):
"""
Under MSR-LA License
Based on MATLAB implementation from Spectrogram Inversion Toolbox
References
----------
D. Griffin and J. Lim. Signal estimation from modified
short-time Fourier transform. IEEE Trans. Acoust. Speech
Signal Process., 32(2):236-243, 1984.
Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory
Model Inversion for Sound Separation. Proc. IEEE-ICASSP,
Adelaide, 1994, II.77-80.
Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal
Estimation from Modified Short-Time Fourier Transform
Magnitude Spectra. IEEE Transactions on Audio Speech and
Language Processing, 08/2007.
"""
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
frame_size = len(x2)
half = frame_size // 2
corrs = np.convolve(x1.astype('float32'), x2[::-1].astype('float32'))
corrs[:half] = -1E30
corrs[-half:] = -1E30
offset = corrs.argmax() - len(x1)
return offsetdef make_mel(spectrogram, mel_filter, shorten_factor = 1):
mel_spec =np.transpose(mel_filter).dot(np.transpose(spectrogram))
mel_spec = scipy.ndimage.zoom(mel_spec.astype('float32'), [1, 1./shorten_factor]).astype('float16')
mel_spec = mel_spec[:,1:-1] # a little hacky but seemingly needed for clipping
return mel_specdef mel_to_spectrogram(mel_spec, mel_inversion_filter, spec_thresh, shorten_factor):
"""
takes in an mel spectrogram and returns a normal spectrogram for inversion
"""
mel_spec = (mel_spec+spec_thresh)
uncompressed_spec = np.transpose(np.transpose(mel_spec).dot(mel_inversion_filter))
uncompressed_spec = scipy.ndimage.zoom(uncompressed_spec.astype('float32'), [1,shorten_factor]).astype('float16')
uncompressed_spec = uncompressed_spec -4
return uncompressed_spec```
```python
# From https://github.com/jameslyons/python_speech_featuresdef hz2mel(hz):
"""Convert a value in Hertz to Mels
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
"""
return 2595 * np.log10(1+hz/700.)
def mel2hz(mel):
"""Convert a value in Mels to Hertz
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
"""
return 700*(10**(mel/2595.0)-1)def get_filterbanks(nfilt=20,nfft=512,samplerate=16000,lowfreq=0,highfreq=None):
"""Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)
:param nfilt: the number of filters in the filterbank, default 20.
:param nfft: the FFT size. Default is 512.
:param samplerate: the samplerate of the signal we are working with. Affects mel spacing.
:param lowfreq: lowest band edge of mel filters, default 0 Hz
:param highfreq: highest band edge of mel filters, default samplerate/2
:returns: A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.
"""
highfreq= highfreq or samplerate/2
assert highfreq <= samplerate/2, "highfreq is greater than samplerate/2"
# compute points evenly spaced in mels
lowmel = hz2mel(lowfreq)
highmel = hz2mel(highfreq)
melpoints = np.linspace(lowmel,highmel,nfilt+2)
# our points are in Hz, but we use fft bins, so we have to convert
# from Hz to fft bin number
bin = np.floor((nfft+1)*mel2hz(melpoints)/samplerate)fbank = np.zeros([nfilt,nfft//2])
for j in range(0,nfilt):
for i in range(int(bin[j]), int(bin[j+1])):
fbank[j,i] = (i - bin[j]) / (bin[j+1]-bin[j])
for i in range(int(bin[j+1]), int(bin[j+2])):
fbank[j,i] = (bin[j+2]-i) / (bin[j+2]-bin[j+1])
return fbankdef create_mel_filter(fft_size, n_freq_components = 64, start_freq = 300, end_freq = 8000, samplerate=44100):
"""
Creates a filter to convolve with the spectrogram to get out mels"""
mel_inversion_filter = get_filterbanks(nfilt=n_freq_components,
nfft=fft_size, samplerate=samplerate,
lowfreq=start_freq, highfreq=end_freq)
# Normalize filter
mel_filter = mel_inversion_filter.T / mel_inversion_filter.sum(axis=1)return mel_filter, mel_inversion_filter
```### Parameters
```python
### Parameters ###
fft_size = 2048 # window size for the FFT
step_size = fft_size/16 # distance to slide along the window (in time)
spec_thresh = 4 # threshold for spectrograms (lower filters out more noise)
lowcut = 500 # Hz # Low cut for our butter bandpass filter
highcut = 15000 # Hz # High cut for our butter bandpass filter
# For mels
n_mel_freq_components = 64 # number of mel frequency channels
shorten_factor = 10 # how much should we compress the x-axis (time)
start_freq = 300 # Hz # What frequency to start sampling our melS from
end_freq = 8000 # Hz # What frequency to stop sampling our melS from
```### Loading the WAV
```python
# Grab your wav and filter it
mywav = 'bushOffersPeace.wav'
rate, data = wavfile.read(mywav)
data = butter_bandpass_filter(data, lowcut, highcut, rate, order=1)
# Only use a short clip for our demo
if np.shape(data)[0]/float(rate) > 10:
data = data[0:rate*10]
print ('Length in time (s): ', np.shape(data)[0]/float(rate))
```Length in time (s): 4.547437641723356
```python
# Play the audio
IPython.display.Audio(data=data, rate=rate)
```
Your browser does not support the audio element.
### Making the spectrogram
```python
wav_spectrogram = pretty_spectrogram(data.astype('float64'), fft_size = fft_size,
step_size = step_size, log = True, thresh = spec_thresh)
``````python
fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4))
cax = ax.matshow(np.transpose(wav_spectrogram), interpolation='nearest', aspect='auto', cmap=plt.cm.afmhot, origin='lower')
fig.colorbar(cax)
plt.title('Original Spectrogram')
```Text(0.5, 1.05, 'Original Spectrogram')
![png](Python-Spectrograms-MFCC-and-Inversion_files/Python-Spectrograms-MFCC-and-Inversion_12_1.png)
### Inverting the Spectrogram
```python
# Invert from the spectrogram back to a waveform
recovered_audio_orig = invert_pretty_spectrogram(wav_spectrogram, fft_size = fft_size,
step_size = step_size, log = True, n_iter = 10)
IPython.display.Audio(data=recovered_audio_orig, rate=rate) # play the audio
``````python
# Make a spectrogram of the inverted audio (for visualization)
inverted_spectrogram = pretty_spectrogram(recovered_audio_orig.astype('float64'), fft_size = fft_size,
step_size = step_size, log = True, thresh = spec_thresh)
fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(18,4))
cax = ax.matshow(np.transpose(inverted_spectrogram), interpolation='nearest', aspect='auto', cmap=plt.cm.afmhot, origin='lower')
fig.colorbar(cax)
plt.title('Recovered Spectrogram')
```### Mel Compression
```python
# Generate the mel filters
mel_filter, mel_inversion_filter = create_mel_filter(fft_size = fft_size,
n_freq_components = n_mel_freq_components,
start_freq = start_freq,
end_freq = end_freq)
``````python
# take a look at both of the filters
fig, ax = plt.subplots(nrows=2,ncols=1, figsize=(20,4))
ax[0].matshow(np.transpose(mel_filter),cmap=plt.cm.afmhot, interpolation='nearest', aspect='auto')
ax[0].set_title('mel Filter')
ax[1].matshow(mel_inversion_filter,cmap=plt.cm.afmhot, interpolation='nearest', aspect='auto')
ax[1].set_title('mel Inversion Filter')
``````python
mel_spec = make_mel(wav_spectrogram, mel_filter, shorten_factor = shorten_factor)
``````python
# plot the compressed spec
fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4))cax = ax.matshow(np.float32(mel_spec), interpolation='nearest', aspect='auto', cmap=plt.cm.afmhot, origin='lower')
fig.colorbar(cax)
plt.title('mel Spectrogram')
``````python
# Output some stats of our file
print(''.join(['mel Spectrogram Size: ',str(np.shape(mel_spec))]))
print(''.join(['Original Spectrogram Size: ',str(np.shape(np.transpose(wav_spectrogram)))]))
print(''.join(['Original Waveform Size: ',str(np.shape(data))]))
print(''.join(['Length (s): ', str(len(data)/float(rate))]))
print(''.join(['Original Sampling Rate (ms) : ', str(1./float(rate))]))
print(''.join(['New Sampling Rate (ms): ', str(float(np.shape(mel_spec)[1]) / (len(data)/float(rate)))]))
``````python
mel_inverted_spectrogram = mel_to_spectrogram(mel_spec, mel_inversion_filter,
spec_thresh=spec_thresh,
shorten_factor=shorten_factor)
``````python
fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4))
cax = ax.matshow(np.float32(mel_inverted_spectrogram), cmap=plt.cm.afmhot, origin='lower', aspect='auto',interpolation='nearest')
fig.colorbar(cax)
plt.title('Inverted mel Spectrogram')
``````python
inverted_mel_audio = invert_pretty_spectrogram(np.transpose(mel_inverted_spectrogram), fft_size = fft_size,
step_size = step_size, log = True, n_iter = 10)
IPython.display.Audio(data=inverted_mel_audio, rate=rate)
```### Sources:
- Audio tools by KastnerKyle
- https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe```python
!jupyter nbconvert --to markdown Python-Spectrograms-MFCC-and-Inversion.ipynb
!jupyter nbconvert --to HTML Python-Spectrograms-MFCC-and-Inversion.ipynb!cp Python-Spectrograms-MFCC-and-Inversion.md readme.md
``````python
```