An open API service indexing awesome lists of open source software.

https://github.com/timueh/pandemicmodeling

Modeling pandemics subject to uncertainties
https://github.com/timueh/pandemicmodeling

flattenthecurve polynomial-chaos-expansions seir-model uncertainties wevsvirus

Last synced: 7 months ago
JSON representation

Modeling pandemics subject to uncertainties

Awesome Lists containing this project

README

          

[![](https://img.shields.io/badge/documentation-Latex-blue?style=flat)](doc/doc.pdf)
[![](https://img.shields.io/badge/language-Julia-blue?style=flat)](https://julialang.org/)

# Modeling pandemics subject to stochastic uncertainties -- A polynomial chaos approach

The so-called [SEIR model](https://epubs.siam.org/doi/abs/10.1137/s0036144500371907) is commonly used to model the outbreak of pandemics.
The plain SEIR model consists of four differential equations, modeling the dynamics of *s*usceptible, *e*xposed, *i*nfected, and *r*ecovered people.
Undeniably, a portion of infected people needs intensive care.
To account for this fact variants of the model exist, [see for instance here for the current Covid-19 pandemic (German)](https://www.dgepi.de/assets/Stellungnahmen/Stellungnahme2020Corona_DGEpi-21032020-v2.pdf), or [here (German)](https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Modellierung_Deutschland.pdf?__blob=publicationFile), or [here (English)](https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf).
As with every mathematical model there are parameters that need to be chosen.
Usually, not precise figures exist.
Hence, uncertainty quantification can play a vital role.

## General resources (mostly Germany-related)

| Resource | Explanation |
| --- | --- |
| [corona.rki.de](https://corona.rki.de) | Dashboard by Robert Koch Institut; goes down to communal level |
| [corona.rki.de -- API](https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0) | API for resource from above |
| [RKI - Meldedaten](https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html) | Meldedaten nach Infektionsschutzgesetz, Robert Koch Institut |
| [Epidemiologisches Bulletin](https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_node.html) | by Robert Koch Institut |
| [Epidemic calculator](https://gabgoh.github.io/COVID/index.html) | Epidemilogical simulation tool |
| [CovidSim](http://covidsim.eu/) | Epidemilogical simulation tool (for Europe)|
| [Risklayer Explorer](http://www.risklayer-explorer.com/) | This company grew out ouf [KIT](www.kit.edu); they still work together closely. Provides more than just information about Germany. |
| [The Mathematics of Infectious Diseases](https://epubs.siam.org/doi/abs/10.1137/s0036144500371907) | Great SIAM paper by Herbert W. Hethcote |
| [Data against Covid](https://www.data-against-covid.org/) | Initiative to share and provide expertise |
| [Estimating $R_0$](https://stochastik-tu-ilmenau.github.io/COVID-19/germany) | Estimation of basic reproduction number for Germany |
| [SIAM Resources for Covid-19](https://sinews.siam.org/Details-Page/mathematical-resources-to-help-understand-covid-19) | Excellent collection of online resources |

## Results

The code introduces uncertainty with respect to the basic reproduction number and the percentage of infected persons that require intensive care (see the [code](https://github.com/timueh/PandemicModeling/blob/f4da19ac8f859b7d5a74180123a80474a8c162d1/code/SEIR_uncertain.jl#L16) for precise numbers).
Unfortunately, the numbers sketch a rather glim future (here for the German scenario).
For instance, here is the number of infected patients over the course of one year.

![Number of infected patients](figs/trajectory_I.png)

And here the number of patients required intensive care

![Number of infected patients](figs/trajectory_ICU.png)

## Model

The basic equations for the SEIR model are ([see for example this excellent reference](https://gabgoh.github.io/COVID/index.html))

![Equations for SEIR model](figs/SEIR.png)

and we augment them by equations for patients requiring intensive care units (ICUs) [motivated by this press release](https://www.dgepi.de/de/aktuelles/article/aktualisierte-stellungnahme-der-deutschen-gesellschaft-fuer-epidemiologie-dgepi-zur-verbreitung-des-neuen-coronavirus-sars-cov-2/109)

![Equations for ICU model](figs/ICU.png)

## Code

The [code](code/SEIR_uncertain.jl) is written in [Julia](https://julialang.org/).
To run it, install all required packages. The main dependencies are [DifferenialEquations.jl](https://github.com/SciML/DifferentialEquations.jl) and [PolyChaos.jl](https://github.com/timueh/PolyChaos.jl).

## Documentation

This repository contains Julia code and a [documentation](doc/doc.pdf) to show how [polynomial chaos expansion](https://en.wikipedia.org/wiki/Polynomial_chaos) can help quantify uncertainties for the SEIR model.