Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tingnie/coursera-ml-using-matlab-python

coursera吴恩达机器学习课程作业自写Python版本+Matlab原版
https://github.com/tingnie/coursera-ml-using-matlab-python

coursera jupyter-notebook machine-learning python2-7

Last synced: 2 days ago
JSON representation

coursera吴恩达机器学习课程作业自写Python版本+Matlab原版

Awesome Lists containing this project

README

        

# ML-code-using-matlab-and-python

coursera吴恩达机器学习课程作业自写**Python2.7**版本,使用**jupyter notebook**实现,使代码更有层次感,可读性强。

本repository实现算法包括如下:

线性回归: linear_regression.ipynb

多元线性回归:linear_multiple.ipynb

逻辑回归:logic_regression.ipynb

正则化用于逻辑回归: logic_regularization.ipynb

模型诊断+学习曲线: learnCurve.ipynb

一对多分类模型:oneVSall.ipynb

神经网络模型:neuralNetwork.ipynb

SVM分类器:svm.ipynb

kmeans聚类:kmeans.ipynb

pca降维:pca.ipynb

高斯分布用于异常检测:anomaly_detection.ipynb

协调过滤推荐算法:Collaborative_Filter.ipynb

PS:网上其他参考资料分享:
-----

1.课程作业原版是MATLAB版本(填空式编码):对应 machine-learning-ex1——ex8 文件夹

2.[kaleko](https://github.com/kaleko/CourseraML)整理的jupyter notebooks版本:对应 coursera_ml_ipynb 文件夹

3.[mstampfer](https://github.com/mstampfer/Coursera-Stanford-ML-Python)对照**原版作业格式**整理的Python版本,可以尝试自己实现

4.[AceCoooool](https://github.com/AceCoooool/ML-Andrew-Ng)整理的Python版本,有中文注释

5.如果需要了解更多算法知识,本人使用jupyter notebook整理的peter的[《机器学习实战》代码](https://github.com/TingNie/Machine-learning-in-action)

6.本人自写的,关于吴恩达(Andrew Ng)开设的深度学习课程[deeplearning.ai](https://github.com/TingNie/deeplearning.ai-coursera)的课程答案