Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tingnie/coursera-ml-using-matlab-python
coursera吴恩达机器学习课程作业自写Python版本+Matlab原版
https://github.com/tingnie/coursera-ml-using-matlab-python
coursera jupyter-notebook machine-learning python2-7
Last synced: about 2 hours ago
JSON representation
coursera吴恩达机器学习课程作业自写Python版本+Matlab原版
- Host: GitHub
- URL: https://github.com/tingnie/coursera-ml-using-matlab-python
- Owner: TingNie
- Created: 2017-10-15T07:36:07.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-11T11:47:51.000Z (almost 7 years ago)
- Last Synced: 2024-07-30T17:55:31.650Z (4 months ago)
- Topics: coursera, jupyter-notebook, machine-learning, python2-7
- Language: Jupyter Notebook
- Homepage:
- Size: 25.5 MB
- Stars: 871
- Watchers: 29
- Forks: 362
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ML-code-using-matlab-and-python
coursera吴恩达机器学习课程作业自写**Python2.7**版本,使用**jupyter notebook**实现,使代码更有层次感,可读性强。
本repository实现算法包括如下:
线性回归: linear_regression.ipynb
多元线性回归:linear_multiple.ipynb
逻辑回归:logic_regression.ipynb
正则化用于逻辑回归: logic_regularization.ipynb
模型诊断+学习曲线: learnCurve.ipynb
一对多分类模型:oneVSall.ipynb
神经网络模型:neuralNetwork.ipynb
SVM分类器:svm.ipynb
kmeans聚类:kmeans.ipynb
pca降维:pca.ipynb
高斯分布用于异常检测:anomaly_detection.ipynb
协调过滤推荐算法:Collaborative_Filter.ipynb
PS:网上其他参考资料分享:
-----1.课程作业原版是MATLAB版本(填空式编码):对应 machine-learning-ex1——ex8 文件夹
2.[kaleko](https://github.com/kaleko/CourseraML)整理的jupyter notebooks版本:对应 coursera_ml_ipynb 文件夹
3.[mstampfer](https://github.com/mstampfer/Coursera-Stanford-ML-Python)对照**原版作业格式**整理的Python版本,可以尝试自己实现
4.[AceCoooool](https://github.com/AceCoooool/ML-Andrew-Ng)整理的Python版本,有中文注释
5.如果需要了解更多算法知识,本人使用jupyter notebook整理的peter的[《机器学习实战》代码](https://github.com/TingNie/Machine-learning-in-action)
6.本人自写的,关于吴恩达(Andrew Ng)开设的深度学习课程[deeplearning.ai](https://github.com/TingNie/deeplearning.ai-coursera)的课程答案