Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tirthajyoti/scikit-image-processing
Image processing examples with Numpy, Scipy, and Scikit-image
https://github.com/tirthajyoti/scikit-image-processing
color computer-vision image-analysis image-processing image-segmentation machine-learning matplotlib matplotlib-pyplot numpy object-detection python scikit-image scipy segmentation
Last synced: 2 months ago
JSON representation
Image processing examples with Numpy, Scipy, and Scikit-image
- Host: GitHub
- URL: https://github.com/tirthajyoti/scikit-image-processing
- Owner: tirthajyoti
- License: mit
- Created: 2019-06-03T06:56:11.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-06-29T07:15:33.000Z (over 5 years ago)
- Last Synced: 2024-11-02T03:50:31.561Z (3 months ago)
- Topics: color, computer-vision, image-analysis, image-processing, image-segmentation, machine-learning, matplotlib, matplotlib-pyplot, numpy, object-detection, python, scikit-image, scipy, segmentation
- Language: Jupyter Notebook
- Homepage:
- Size: 14.4 MB
- Stars: 35
- Watchers: 3
- Forks: 26
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
### Please feel free to [connect with me here on LinkedIn](https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7/) if you are interested in data science and machine learning.
---
# Image processing examples with Numpy, Scipy, and Scikit-image
### Requirements
* **Python 3.4+**
* **NumPy (`$ pip install numpy`)**
* **SciPy (`$ pip install scipy`)**
* **MatplotLib (`$ pip install matplotlib`)**
* **Scikit-image (`$ pip install scikit-image`)**---
### Testing after install
Open a Jupyter notebook and execute the following code,
```
import numpy as np
import matplotlib.pyplot as plt
from skimage import data, io, filtersimage = data.coins() # or any NumPy array!
edges = filters.sobel(image)
io.imshow(edges)
```You should see the following output. If you see this, you are all set to go!
![sobel_coins](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/images/sobel_coins.PNG)
---
### Simple NumPy array based operations
* [Demo of NumPy based image manipulation](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Using_Numpy_image_manipulation.ipynb)
* [Block view function and pooling/sampling](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Block_view_mean_max_median_sampling.ipynb)
* [Zooming (interpolation) based on SciPy](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Scipy_zooming.ipynb)
---
### Exposure and color channel manipulations
* [RGB to gray conversion](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/RGB2Gray.ipynb)
* [RGB to HSV (Hue-Saturation-Value) conversion](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/RGB_to_HSV.ipynb)
* [Adapting gray-scale filters to RGB images using special decorator](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Adapt_RGB_decorator.ipynb)
* [Adjusting contrast by filtering regional maxima](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Filtering_regional_maxima.ipynb)
* [Local Histogram equalization](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Local_Histogram_Equalization.ipynb)
* [Gamma and log contrast](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Gamma_log_contrast_adjustment.ipynb)
* [Tinting grayscale images](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Tint_Grayscale.ipynb)
---
### Edges, lines, and contours
* [Finding contours](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Finding_contours.ipynb)
* [Convex Hull of an image](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Convex_Hull.ipynb)
* [Skeletonize 2-D and 3-D images](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Skeletonize.ipynb)
* [Marching cubes](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Marching_cubes.ipynb)
* [Edge operators](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Edge_operators.ipynb)
---
### Geometrical transformations and registration
* [Swirl](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Swirl.ipynb)
* [Interpolation - edge modes](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Interpolation%20-%20Edge%20modes.ipynb)
* [Rescale, resize, downscale](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Rescale_resize_downscale.ipynb)
* [Histogram matching](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Histogram_matching.ipynb)
* [Structural similarity index](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Structural_similarity_index.ipynb)
### Filtering and restoration
[Hysteresis thresholding](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Hysteresis_thresholding.ipynb)
[Image deconvolution](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Image_deconvolution.ipynb)
[Unsharp mask](https://github.com/tirthajyoti/Scikit-image-processing/blob/master/Unsharp_mask.ipynb)