https://github.com/tirthajyoti/stats-maths-with-python
General statistics, mathematical programming, and numerical/scientific computing scripts and notebooks in Python
https://github.com/tirthajyoti/stats-maths-with-python
analytics anova bayesian-statistics clustering data-science hypothesis-testing inferential-statistics machine-learning mathematical-programming mathematics matplotlib normal-distribution numerical-analysis numpy pandas probability python scipy statistics statsmodels
Last synced: 9 days ago
JSON representation
General statistics, mathematical programming, and numerical/scientific computing scripts and notebooks in Python
- Host: GitHub
- URL: https://github.com/tirthajyoti/stats-maths-with-python
- Owner: tirthajyoti
- License: mit
- Created: 2017-11-06T09:27:30.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2022-09-18T16:57:57.000Z (over 2 years ago)
- Last Synced: 2025-04-03T20:12:28.630Z (18 days ago)
- Topics: analytics, anova, bayesian-statistics, clustering, data-science, hypothesis-testing, inferential-statistics, machine-learning, mathematical-programming, mathematics, matplotlib, normal-distribution, numerical-analysis, numpy, pandas, probability, python, scipy, statistics, statsmodels
- Language: Jupyter Notebook
- Homepage:
- Size: 70.1 MB
- Stars: 916
- Watchers: 38
- Forks: 379
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Statistics/ Mathematical Computing Notebooks
Jupyter Notebooks on the topics of statistical analysis, mathematics, and numerical/sceintific computing (in Python).### Please feel free to [connect with me on LinkedIn](https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7/) if you are interested in data science and like to connect.
----
### Requirements
* **Python 3.6+**
* **NumPy (`$ pip install numpy`)**
* **Pandas (`$ pip install pandas`)**
* **Scikit-learn (`$ pip install scikit-learn`)**
* **SciPy (`$ pip install scipy`)**
* **Statsmodels (`$ pip install statsmodels`)**
* **MatplotLib (`$ pip install matplotlib`)**
* **Seaborn (`$ pip install seaborn`)**---
### [Set Algebra basics](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Set_Algebra_with_Python.ipynb)

### [Permutations and Combinations](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Permutations_and_Combinations.ipynb)

### [Probability distributions (Discrete)](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Prob_Distributions_Discrete.ipynb)

### [Linear Regression Methods](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Linear_Regression_Methods.ipynb)

### [_R-style_ Statistical functions written using Python](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/R-style%20Functions.ipynb)

### [Diagnostics of a linear regression problem](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Regression_Diagnostics.ipynb)### [Introduction to hypothesis testing](https://github.com/tirthajyoti/Stats-Maths-with-Python/blob/master/Intro_Hypothesis_Testing.ipynb)
## Articles
Check out this article I wrote on Medium: ___[Essential Math for Data Science.](https://towardsdatascience.com/essential-math-for-data-science-why-and-how-e88271367fbd)___Check out this article I wrote on Medium about ___["How to write your favorite R functions — in Python?"](https://towardsdatascience.com/how-to-write-your-favorite-r-functions-in-python-11e1e9c29089)___
Check out this article I wrote on Medium about ___["Mathematical programming — a key habit to build up for advancing in data science?"](https://towardsdatascience.com/mathematical-programming-a-key-habit-to-built-up-for-advancing-in-data-science-c6d5c29533be)___
Check out this article I wrote on Medium about ___["Bayes’ rule with a simple and practical example"](https://towardsdatascience.com/bayes-rule-with-a-simple-and-practical-example-2bce3d0f4ad0)___
Check out this article I wrote on Medium about ___["Statistical modeling with “Pomegranate” — fast and intuitive"](https://towardsdatascience.com/statistical-modeling-with-pomegranate-fast-and-intuitive-4d605d9c33a9)___