https://github.com/tirtharajsinha/breast_cancer_detection_with_cnn
An unstructured mammogram analysis for feasible classification and detection of breast cancer using a convolutional approach
https://github.com/tirtharajsinha/breast_cancer_detection_with_cnn
breast-cancer-prediction cnn keras python research-project tensorflow
Last synced: 8 months ago
JSON representation
An unstructured mammogram analysis for feasible classification and detection of breast cancer using a convolutional approach
- Host: GitHub
- URL: https://github.com/tirtharajsinha/breast_cancer_detection_with_cnn
- Owner: tirtharajsinha
- Created: 2021-09-24T21:48:15.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2022-04-26T07:30:14.000Z (over 3 years ago)
- Last Synced: 2025-01-04T21:28:24.752Z (9 months ago)
- Topics: breast-cancer-prediction, cnn, keras, python, research-project, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 21 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# An unstructured mammogram analysis for feasible classification and detection of breast cancer using a convolutional approach
> this is the source code is for B.TECH 3rd year 5 sem project iii
### Project Topic : Breast tumor classification using Convolutional neural network (CNN).
### Domain of the project : Biomedical Image Processing (14)
## Content
1. Project III core (Project core codes)\*
2. Project III app (Application based on Core project) \*
3. project Report/Documentation (.docx)
4. Project Presentation (.pptx)
5. instruction (/README.md and /Project II app/README.md)
6. additional## project code requirement
1. core Backend Language : python3
2. core Backend frameworks/packages : Tensorflow, Keras, scikit-learn , numpy, pandas, matplotlib, seaborn, opencv, pillow etc.
3. Tools | IDE - data science : Jupyter Notebook , Other : Pycharm | Text Editor : VS Code | online : kaggle, google colab
4. Frontend Language : web Tecknoledgies(HTML,CSS,Js)
5. Application Backend : matter to think later
6. version control system : git | remote-repository-platform : github.com## notes
1. clone or download the repo and open terminal in repo.
2. use of python 3.8 is reccomended(as 3.9 not tested)
3. use of virtual environment reccomended.
4. install requirements.txt using `pip install -r requirements.txt`## upstream the local repository with remote repository
```
git remote add upstream https://github.com/tirtharajsinha/Breast_cancer_detection_with_CNN.git
git fetch upstream
git checkout main
git merge upstream/main```
## reset repo
```
git reset --hard origin/main
```### view the documentation for the app-Instruction and troubleshooting at [Project III app/README.md](Project%20III%20app/README.md) file.
requirements
> before use the codes make sure requirements are installed in your workspace.
> get requirements [list](requirements.txt)
> dataset [link](https://github.com/tirtharajsinha/breast_cancer_image_dataset)## Important Links
1. kaggle - [visit](https://www.kaggle.com)
2. google colab - [visit](https://colab.research.google.com/notebooks/intro.ipynb)
3. python.org - [visit](https://www.python.org/downloads/)
4. pypi.org - [visit](https://pypi.org/)
5. tensorflow.org - [visit](https://www.tensorflow.org/)
6. opencv docs - [visit](https://docs.opencv.org/master/d6/d00/tutorial_py_root.html)
7. Flask docs - [visit](https://flask.palletsprojects.com/en/latest/)## App snapshot
![]()
![]()
![]()
![]()
### author : Tirtharaj Sinha [](https://tirtharajsinha.github.io)