Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/titsuki/raku-algorithm-libsvm

A Raku bindings for libsvm
https://github.com/titsuki/raku-algorithm-libsvm

libsvm perl6 raku rakulang zef

Last synced: 3 months ago
JSON representation

A Raku bindings for libsvm

Awesome Lists containing this project

README

        

[![Actions Status](https://github.com/titsuki/raku-Algorithm-LibSVM/workflows/test/badge.svg)](https://github.com/titsuki/raku-Algorithm-LibSVM/actions)

NAME
====

Algorithm::LibSVM - A Raku bindings for libsvm

SYNOPSIS
========

EXAMPLE 1
---------

use Algorithm::LibSVM;
use Algorithm::LibSVM::Parameter;
use Algorithm::LibSVM::Problem;
use Algorithm::LibSVM::Model;

my $libsvm = Algorithm::LibSVM.new;
my Algorithm::LibSVM::Parameter $parameter .= new(svm-type => C_SVC,
kernel-type => RBF);
# heart_scale is here: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/heart_scale
my Algorithm::LibSVM::Problem $problem = Algorithm::LibSVM::Problem.from-file('heart_scale');
my @r = $libsvm.cross-validation($problem, $parameter, 10);
$libsvm.evaluate($problem.y, @r).say; # {acc => 81.1111111111111, mse => 0.755555555555556, scc => 1.01157627463546}

EXAMPLE 2
---------

use Algorithm::LibSVM;
use Algorithm::LibSVM::Parameter;
use Algorithm::LibSVM::Problem;
use Algorithm::LibSVM::Model;

sub gen-train {
my $max-x = 1;
my $min-x = -1;
my $max-y = 1;
my $min-y = -1;
my @x;
my @y;
do for ^300 {
my $x = $min-x + rand * ($max-x - $min-x);
my $y = $min-y + rand * ($max-y - $min-y);

my $label = do given $x, $y {
when ($x - 0.5) ** 2 + ($y - 0.5) ** 2 <= 0.2 {
1
}
when ($x - -0.5) ** 2 + ($y - -0.5) ** 2 <= 0.2 {
-1
}
default { Nil }
}
if $label.defined {
@y.push: $label;
@x.push: [$x, $y];
}
}
(@x, @y)
}

my (@train-x, @train-y) := gen-train;
my @test-x = 1 => 0.5e0, 2 => 0.5e0;
my $libsvm = Algorithm::LibSVM.new;
my Algorithm::LibSVM::Parameter $parameter .= new(svm-type => C_SVC,
kernel-type => LINEAR);
my Algorithm::LibSVM::Problem $problem = Algorithm::LibSVM::Problem.from-matrix(@train-x, @train-y);
my $model = $libsvm.train($problem, $parameter);
say $model.predict(features => @test-x) # 1

DESCRIPTION
===========

Algorithm::LibSVM is a Raku bindings for libsvm.

METHODS
-------

### cross-validation

Defined as:

method cross-validation(Algorithm::LibSVM::Problem $problem, Algorithm::LibSVM::Parameter $param, Int $nr-fold --> List)

Conducts `$nr-fold`-fold cross validation and returns predicted values.

### train

Defined as:

method train(Algorithm::LibSVM::Problem $problem, Algorithm::LibSVM::Parameter $param --> Algorithm::LibSVM::Model)

Trains a SVM model.

* `$problem` The instance of Algorithm::LibSVM::Problem.

* `$param` The instance of Algorithm::LibSVM::Parameter.

### **DEPRECATED** load-problem

Defined as:

multi method load-problem(\lines --> Algorithm::LibSVM::Problem)
multi method load-problem(Str $filename --> Algorithm::LibSVM::Problem)

Loads libsvm-format data.

### load-model

Defined as:

method load-model(Str $filename --> Algorithm::LibSVM::Model)

Loads libsvm model.

### evaluate

Defined as:

method evaluate(@true-values, @predicted-values --> Hash)

Evaluates the performance of the three metrics (i.e. accuracy, mean squared error and squared correlation coefficient)

* `@true-values` The array that contains ground-truth values.

* `@predicted-values` The array that contains predicted values.

### nr-feature

Defined as:

method nr-feature(--> Int:D)

Returns the maximum index of all the features.

ROUTINES
--------

### parse-libsvmformat

Defined as:

sub parse-libsvmformat(Str $text --> List) is export

Is a helper routine for handling libsvm-format text.

CAUTION
=======

DON'T USE `PRECOMPUTED` KERNEL
------------------------------

As a workaround for [RT130187](https://rt.perl.org/Public/Bug/Display.html?id=130187), I applied the patch programs (e.g. [src/3.22/svm.cpp.patch](src/3.22/svm.cpp.patch)) for the sake of disabling random access of the problematic array.

Sadly to say, those patches drastically increase the complexity of using `PRECOMPUTED` kernel.

SEE ALSO
========

* libsvm [https://github.com/cjlin1/libsvm](https://github.com/cjlin1/libsvm)

* RT130187 [https://rt.perl.org/Public/Bug/Display.html?id=130187](https://rt.perl.org/Public/Bug/Display.html?id=130187)

AUTHOR
======

titsuki

COPYRIGHT AND LICENSE
=====================

Copyright 2016 titsuki

This library is free software; you can redistribute it and/or modify it under the terms of the MIT License.

libsvm ( https://github.com/cjlin1/libsvm ) by Chih-Chung Chang and Chih-Jen Lin is licensed under the BSD 3-Clause License.