Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/titsuki/raku-random-choice
A Raku alias method implementation
https://github.com/titsuki/raku-random-choice
alias choice method perl6 raku rakulang random zef
Last synced: 11 days ago
JSON representation
A Raku alias method implementation
- Host: GitHub
- URL: https://github.com/titsuki/raku-random-choice
- Owner: titsuki
- License: artistic-2.0
- Created: 2019-03-03T15:38:46.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2022-10-26T14:53:31.000Z (about 2 years ago)
- Last Synced: 2024-11-05T18:56:46.291Z (about 2 months ago)
- Topics: alias, choice, method, perl6, raku, rakulang, random, zef
- Language: Raku
- Homepage:
- Size: 30.3 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: Changes
- License: LICENSE
Awesome Lists containing this project
README
[![Build Status](https://travis-ci.org/titsuki/raku-Random-Choice.svg?branch=master)](https://travis-ci.org/titsuki/raku-Random-Choice)
NAME
====Random::Choice - A Raku alias method implementation
SYNOPSIS
========```perl6
use Random::Choice;say choice(:size(8), :p([0.1, 0.1, 0.1, 0.7])); # (3 1 0 3 3 3 3 3)
say choice(:p([0.1, 0.1, 0.1, 0.7])); # 3
```DESCRIPTION
===========Random::Choice is a Raku alias method implementation. Alias method is an efficient algorithm for sampling from a discrete probability distribution.
METHODS
-------### choice
Defined as:
multi sub choice(:@p! --> Int) is export
multi sub choice(Int :$size!, :@p! --> List)Returns a sample which is an Int value or a List. Where `:@p` is the probabilities associated with each index and `:$size` is the sample size.
FAQ
===Is `Random::Choice` faster than Mix.roll?
-----------------------------------------The answer is YES when you roll a large biased dice or try to roll a dice many times; but NO when a biased dice is small or try to roll a dice few times.
Why? There are some possible reasons:
* `Random::Choice` employs O(N) + O(1) algorithm whereas `Mix.roll` employs O(N) + O(N) algorithm (rakudo 2018.12).
* `Mix.roll` is directly written in nqp. In general, nqp-powered code is faster than naive-Raku-powered code when they take small input.
* Both algorithms take O(N) initialization cost; however, the actual cost of `Mix.roll` is slightly less than `Random::Choice`.
A benchmark result is here (For more info, see `example/bench.p6`):
### A Benchmark Result
### The Comparison Table on the Benchmark
```bash
$ perl6 example/bench.p6
Benchmark:
Timing 1000 iterations of Mix(size=10, @p.elems=10) , Random::Choice(size=10, @p.elems=10)...
Mix(size=10, @p.elems=10) : 0.076 wallclock secs (0.086 usr 0.003 sys 0.089 cpu) @ 13154.606/s (n=1000)
Random::Choice(size=10, @p.elems=10): 0.122 wallclock secs (0.137 usr 0.008 sys 0.145 cpu) @ 8210.383/s (n=1000)
O--------------------------------------O---------O----------------------------O--------------------------------------O
| | Rate | Mix(size=10, @p.elems=10) | Random::Choice(size=10, @p.elems=10) |
O======================================O=========O============================O======================================O
| Mix(size=10, @p.elems=10) | 13155/s | -- | -42% |
| Random::Choice(size=10, @p.elems=10) | 8210/s | 73% | -- |
O--------------------------------------O---------O----------------------------O--------------------------------------O
Benchmark:
Timing 1000 iterations of Mix(size=1000, @p.elems=10) , Random::Choice(size=1000, @p.elems=10)...
Mix(size=1000, @p.elems=10) : 1.879 wallclock secs (1.892 usr 0.000 sys 1.892 cpu) @ 532.130/s (n=1000)
Random::Choice(size=1000, @p.elems=10): 0.097 wallclock secs (0.099 usr 0.002 sys 0.101 cpu) @ 10361.621/s (n=1000)
O----------------------------------------O---------O------------------------------O----------------------------------------O
| | Rate | Mix(size=1000, @p.elems=10) | Random::Choice(size=1000, @p.elems=10) |
O========================================O=========O==============================O========================================O
| Mix(size=1000, @p.elems=10) | 532/s | -- | 2141% |
| Random::Choice(size=1000, @p.elems=10) | 10362/s | -96% | -- |
O----------------------------------------O---------O------------------------------O----------------------------------------O
Benchmark:
Timing 1000 iterations of Mix(size=10, @p.elems=1000) , Random::Choice(size=10, @p.elems=1000)...
Mix(size=10, @p.elems=1000) : 2.576 wallclock secs (2.560 usr 0.020 sys 2.580 cpu) @ 388.182/s (n=1000)
Random::Choice(size=10, @p.elems=1000): 6.010 wallclock secs (6.015 usr 0.032 sys 6.047 cpu) @ 166.398/s (n=1000)
O----------------------------------------O-------O------------------------------O----------------------------------------O
| | Rate | Mix(size=10, @p.elems=1000) | Random::Choice(size=10, @p.elems=1000) |
O========================================O=======O==============================O========================================O
| Mix(size=10, @p.elems=1000) | 388/s | -- | -57% |
| Random::Choice(size=10, @p.elems=1000) | 166/s | 134% | -- |
O----------------------------------------O-------O------------------------------O----------------------------------------O
Benchmark:
Timing 1000 iterations of Mix(size=100, @p.elems=100), Random::Choice(size=100, @p.elems=100)...
Mix(size=100, @p.elems=100): 1.505 wallclock secs (1.511 usr 0.000 sys 1.511 cpu) @ 664.420/s (n=1000)
Random::Choice(size=100, @p.elems=100): 0.619 wallclock secs (0.624 usr 0.000 sys 0.624 cpu) @ 1616.535/s (n=1000)
O----------------------------------------O--------O-----------------------------O----------------------------------------O
| | Rate | Mix(size=100, @p.elems=100) | Random::Choice(size=100, @p.elems=100) |
O========================================O========O=============================O========================================O
| Mix(size=100, @p.elems=100) | 664/s | -- | 146% |
| Random::Choice(size=100, @p.elems=100) | 1617/s | -59% | -- |
O----------------------------------------O--------O-----------------------------O----------------------------------------O
Benchmark:
Timing 1000 iterations of Mix(size=1000, @p.elems=1000), Random::Choice(size=1000, @p.elems=1000)...
Mix(size=1000, @p.elems=1000): 135.720 wallclock secs (135.946 usr 0.288 sys 136.234 cpu) @ 7.368/s (n=1000)
Random::Choice(size=1000, @p.elems=1000): 6.022 wallclock secs (6.031 usr 0.028 sys 6.058 cpu) @ 166.058/s (n=1000)
O------------------------------------------O--------O-------------------------------O------------------------------------------O
| | Rate | Mix(size=1000, @p.elems=1000) | Random::Choice(size=1000, @p.elems=1000) |
O==========================================O========O===============================O==========================================O
| Mix(size=1000, @p.elems=1000) | 7.37/s | -- | 2158% |
| Random::Choice(size=1000, @p.elems=1000) | 166/s | -96% | -- |
O------------------------------------------O--------O-------------------------------O------------------------------------------O
```### The Environment on the Benchmark
* `CPU` Ryzen7 5800X (8core)
* `OS` Debian11 bullseye
AUTHOR
======titsuki
COPYRIGHT AND LICENSE
=====================Copyright 2019 titsuki
This library is free software; you can redistribute it and/or modify it under the Artistic License 2.0.
The algorithm is from:
* Vose, Michael D. "A linear algorithm for generating random numbers with a given distribution." IEEE Transactions on software engineering 17.9 (1991): 972-975.