Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/titu1994/keras-squeeze-excite-network
Implementation of Squeeze and Excitation Networks in Keras
https://github.com/titu1994/keras-squeeze-excite-network
deep-learning keras squeeze-excite
Last synced: 6 days ago
JSON representation
Implementation of Squeeze and Excitation Networks in Keras
- Host: GitHub
- URL: https://github.com/titu1994/keras-squeeze-excite-network
- Owner: titu1994
- License: mit
- Created: 2017-08-27T05:05:14.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2020-03-10T10:48:19.000Z (almost 5 years ago)
- Last Synced: 2025-01-13T08:07:13.413Z (13 days ago)
- Topics: deep-learning, keras, squeeze-excite
- Language: Python
- Size: 479 KB
- Stars: 401
- Watchers: 15
- Forks: 118
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Squeeze and Excitation Networks in Keras
Implementation of [Squeeze and Excitation Networks](https://arxiv.org/pdf/1709.01507.pdf) in Keras 2.0.3+.## Models
Current models supported :- SE-ResNet. Custom ResNets can be built using the `SEResNet` model builder, whereas prebuilt Resnet models such as `SEResNet50`, `SEResNet101` and `SEResNet154` can also be built directly.
- SE-InceptionV3
- SE-Inception-ResNet-v2
- SE-ResNeXtAdditional models (not from the paper, not verified if they improve performance)
- SE-MobileNets
- SE-DenseNet - Custom SE-DenseNets can be built using `SEDenseNet` model builder, whereas prebuilt SEDenseNet models such as `SEDenseNetImageNet121`, `SEDenseNetImageNet169`, `SEDenseNetImageNet161`, `SEDenseNetImageNet201` and `SEDenseNetImageNet264` can be build DenseNet in ImageNet configuration. To use SEDenseNet in CIFAR mode, use the `SEDenseNet` model builder.## Squeeze and Excitation block
The block is simple to implement in Keras. It composes of a GlobalAveragePooling2D, 2 Dense blocks and an elementwise multiplication.
Shape inference can be done automatically in Keras. It can be imported from `se.py`.```python
from tensorflow.keras.layers import GlobalAveragePooling2D, Reshape, Dense, Permute, multiply
import tensorflow.keras.backend as Kdef squeeze_excite_block(tensor, ratio=16):
init = tensor
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
filters = init._keras_shape[channel_axis]
se_shape = (1, 1, filters)se = GlobalAveragePooling2D()(init)
se = Reshape(se_shape)(se)
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)if K.image_data_format() == 'channels_first':
se = Permute((3, 1, 2))(se)x = multiply([init, se])
return x
```## Addition of Squeeze and Excitation blocks to Inception and ResNet blocks