Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tjake/jlama

Jlama is a modern LLM inference engine for Java
https://github.com/tjake/jlama

ai genai gpt huggingface java llama llm openai simd transformers

Last synced: 1 day ago
JSON representation

Jlama is a modern LLM inference engine for Java

Awesome Lists containing this project

README

        

# πŸ¦™ Jlama: A modern LLM inference engine for Java


Cute Jlama

[![Maven Central Version](https://img.shields.io/maven-central/v/com.github.tjake/jlama-parent?style=flat-square)](https://central.sonatype.com/artifact/com.github.tjake/jlama-core/overview)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
[![Discord](https://img.shields.io/discord/1279855254812229642?style=flat-square&label=Discord&color=663399)](https://discord.gg/HsYXHrMu6J)

## πŸš€ Features

Model Support:
* Gemma & Gemma 2 Models
* Llama & Llama2 & Llama3 Models
* Mistral & Mixtral Models
* Qwen2 Models
* IBM Granite Models
* GPT-2 Models
* BERT Models
* BPE Tokenizers
* WordPiece Tokenizers

Implements:
* Paged Attention
* Mixture of Experts
* Tool Calling
* Generate Embeddings
* Classifier Support
* Huggingface [SafeTensors](https://github.com/huggingface/safetensors) model and tokenizer format
* Support for F32, F16, BF16 types
* Support for Q8, Q4 model quantization
* Fast GEMM operations
* Distributed Inference!

Jlama requires Java 20 or later and utilizes the new [Vector API](https://openjdk.org/jeps/448)
for faster inference.

## πŸ€” What is it used for?

Add LLM Inference directly to your Java application.

## πŸ”¬ Quick Start

### πŸ•΅οΈβ€β™€οΈ How to use as a local client (with jbang!)
Jlama includes a command line tool that makes it easy to use.

The CLI can be run with [jbang](https://www.jbang.dev/download/).

```shell
#Install jbang (or https://www.jbang.dev/download/)
curl -Ls https://sh.jbang.dev | bash -s - app setup

#Install Jlama CLI (will ask if you trust the source)
jbang app install --force jlama@tjake
```

Now that you have jlama installed you can download a model from huggingface and chat with it.
Note I have pre-quantized models available at https://hf.co/tjake

```shell
# Run the openai chat api and UI on a model
jlama restapi tjake/Llama-3.2-1B-Instruct-JQ4 --auto-download
```

open browser to http://localhost:8080/


Demo chat

```shell
Usage:

jlama [COMMAND]

Description:

Jlama is a modern LLM inference engine for Java!
Quantized models are maintained at https://hf.co/tjake

Choose from the available commands:

Inference:
chat Interact with the specified model
restapi Starts a openai compatible rest api for interacting with this model
complete Completes a prompt using the specified model

Distributed Inference:
cluster-coordinator Starts a distributed rest api for a model using cluster workers
cluster-worker Connects to a cluster coordinator to perform distributed inference

Other:
download Downloads a HuggingFace model - use owner/name format
list Lists local models
quantize Quantize the specified model
```

### πŸ‘¨β€πŸ’» How to use in your Java project
The main purpose of Jlama is to provide a simple way to use large language models in Java.

The simplest way to embed Jlama in your app is with the [Langchain4j Integration](https://github.com/langchain4j/langchain4j-examples/tree/main/jlama-examples).

If you would like to embed Jlama without langchain4j, add the following [maven](https://central.sonatype.com/artifact/com.github.tjake/jlama-core/) dependencies to your project:

```xml

com.github.tjake
jlama-core
${jlama.version}

com.github.tjake
jlama-native

${os.detected.name}-${os.detected.arch}
${jlama.version}

```

jlama uses Java 21 preview features. You can enable the features globally with:

```shell
export JDK_JAVA_OPTIONS="--add-modules jdk.incubator.vector --enable-preview"
```
or enable the preview features by configuring maven compiler and failsafe plugins.

Then you can use the Model classes to run models:

```java
public void sample() throws IOException {
String model = "tjake/Llama-3.2-1B-Instruct-JQ4";
String workingDirectory = "./models";

String prompt = "What is the best season to plant avocados?";

// Downloads the model or just returns the local path if it's already downloaded
File localModelPath = new Downloader(workingDirectory, model).huggingFaceModel();

// Loads the quantized model and specified use of quantized memory
AbstractModel m = ModelSupport.loadModel(localModelPath, DType.F32, DType.I8);

PromptContext ctx;
// Checks if the model supports chat prompting and adds prompt in the expected format for this model
if (m.promptSupport().isPresent()) {
ctx = m.promptSupport()
.get()
.builder()
.addSystemMessage("You are a helpful chatbot who writes short responses.")
.addUserMessage(prompt)
.build();
} else {
ctx = PromptContext.of(prompt);
}

System.out.println("Prompt: " + ctx.getPrompt() + "\n");
// Generates a response to the prompt and prints it
// The api allows for streaming or non-streaming responses
// The response is generated with a temperature of 0.7 and a max token length of 256
Generator.Response r = m.generate(UUID.randomUUID(), ctx, 0.0f, 256, (s, f) -> {});
System.out.println(r.responseText);
}
```

Or you can use a **Builder API**:

```java
public void sample() throws IOException {
String model = "tjake/Llama-3.2-1B-Instruct-JQ4";
String workingDirectory = "./models";

String prompt = "What is the best season to plant avocados?";

// Downloads the model or just returns the local path if it's already downloaded
File localModelPath = new Downloader(workingDirectory, model).huggingFaceModel();

// Loads the quantized model and specified use of quantized memory
AbstractModel m = ModelSupport.loadModel(localModelPath, DType.F32, DType.I8);

PromptContext ctx;
// Checks if the model supports chat prompting and adds prompt in the expected format for this model
if (m.promptSupport().isPresent()) {
ctx = m.promptSupport()
.get()
.builder()
.addSystemMessage("You are a helpful chatbot who writes short responses.")
.addUserMessage(prompt)
.build();
} else {
ctx = PromptContext.of(prompt);
}

System.out.println("Prompt: " + ctx.getPrompt() + "\n");
// Generates a response to the prompt and prints it
// The api allows for streaming or non-streaming responses
// The response is generated with a temperature of 0.7 and a max token length of 256
Generator.Response r = m.generateBuilder()
.session(UUID.randomUUID()) //By default, UUID.randomUUID()
.promptContext(ctx) // Required or use prompt(String text)
.ntokens(256) //By default, 256
.temperature(0.0f) //By default, 0.0f
.onTokenWithTimings((s, aFloat) -> {}) //By default, (s, aFloat) -> {}, nothing
.generate();

System.out.println(r.responseText);
}
```

## ⭐ Give us a Star!

If you like or are using this project to build your own, please give us a star. It's a free way to show your support.

## πŸ—ΊοΈ Roadmap

* Support more and more models
* Add pure java tokenizers
* Support Quantization (e.g. k-quantization)
* Add LoRA support
* GraalVM support
* Add distributed inference

## 🏷️ License and Citation

The code is available under [Apache License](./LICENSE).

If you find this project helpful in your research, please cite this work at

```
@misc{jlama2024,
title = {Jlama: A modern Java inference engine for large language models},
url = {https://github.com/tjake/jlama},
author = {T Jake Luciani},
month = {January},
year = {2024}
}
```