Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tkipf/keras-gcn
Keras implementation of Graph Convolutional Networks
https://github.com/tkipf/keras-gcn
Last synced: 4 days ago
JSON representation
Keras implementation of Graph Convolutional Networks
- Host: GitHub
- URL: https://github.com/tkipf/keras-gcn
- Owner: tkipf
- License: mit
- Created: 2017-01-27T09:20:28.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2021-04-19T23:36:21.000Z (over 3 years ago)
- Last Synced: 2024-11-02T23:32:51.374Z (14 days ago)
- Language: Python
- Homepage:
- Size: 171 KB
- Stars: 791
- Watchers: 23
- Forks: 266
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-gcn - tkipf/keras-gcn
README
Deep Learning on Graphs with Keras
====Keras-based implementation of graph convolutional networks for semi-supervised classification.
Thomas N. Kipf, Max Welling, [Semi-Supervised Classification with Graph Convolutional Networks](http://arxiv.org/abs/1609.02907) (ICLR 2017)
For a high-level explanation, have a look at our blog post:
Thomas Kipf, [Graph Convolutional Networks](http://tkipf.github.io/graph-convolutional-networks/) (2016)
**NOTE: This code is not intended to reproduce the experiments from the paper as the initialization scheme, dropout scheme, and dataset splits differ from the original implementation in TensorFlow: https://github.com/tkipf/gcn**
Installation
------------```python setup.py install```
Dependencies
-----* keras (1.0.9 or higher)
* TensorFlow or TheanoUsage
-----```python train.py```
Dataset reference (Cora)
----------[Sen et al., Collective Classification in Network Data, AI Magazine 2008](http://linqs.cs.umd.edu/projects/projects/lbc/)
## Cite
Please cite our paper if you use this code in your own work:
```
@inproceedings{kipf2017semi,
title={Semi-Supervised Classification with Graph Convolutional Networks},
author={Kipf, Thomas N. and Welling, Max},
booktitle={International Conference on Learning Representations (ICLR)},
year={2017}
}
```