Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tlkh/pycon-sg19-tensorflow-tutorial

PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance
https://github.com/tlkh/pycon-sg19-tensorflow-tutorial

deep-learning keras mixed-precision nvidia tensorflow

Last synced: about 2 months ago
JSON representation

PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance

Awesome Lists containing this project

README

        

# PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance

![GitHub last commit](https://img.shields.io/github/last-commit/NVAITC/pycon-sg19-tensorflow-tutorial.svg) ![GitHub](https://img.shields.io/github/license/NVAITC/pycon-sg19-tensorflow-tutorial.svg) ![](https://img.shields.io/github/repo-size/NVAITC/pycon-sg19-tensorflow-tutorial.svg)

This workshop content covers:

* a brief introduction to deep learning and TensorFlow 2.0
* using `tf.data` and TensorFlow Datasets
* XLA compiler and Automatic Mixed Precision (AMP)
* speeding up CNN (ResNet-50) with XLA and AMP
* speeding up Transformer (BERT) with XLA and AMP

For a quick guide to using Automatic Mixed Precision, check out this [TLDR](https://drive.google.com/open?id=1Nz2438DBQS591kHha2ENL7VBhmBaXQ_loQVi3rywRVU).

## Content

**Slides** are in this [Google Drive folder](https://drive.google.com/open?id=1RR0UhnvJ3PHL4sGRe2du4_w66Kg9KNVr).

**Notebooks**

| Notebook | Link | Solution |
| ------------------------------ | ---- | -------- |
| TensorFlow Dataset & tf.data | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_dataset_demo.ipynb) | |
| Pet Classification with TF 2.0 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_pet_base.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/solutions/tf_pet_solution.ipynb) |
| Transformers with TF 2.0 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_transformer_base.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/solutions/tf_transformer_solution.ipynb) |

For those running the notebooks on the workshop JupyterHub or on your own hardware, you can clone this repository.

```shell
git clone https://github.com/NVAITC/pycon-sg19-tensorflow-tutorial
```

## Workshop Information

**In-person @ PyCon SG 2019**

* Attend the workshop 10am to 1pm on Saturday, October 12 at [Republic Polytechnic](https://pycon.sg/venue/).
* Get your tickets [here](https://www.eventnook.com/event/pyconsingapore2019/).