Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tlkh/pycon-sg19-tensorflow-tutorial
PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance
https://github.com/tlkh/pycon-sg19-tensorflow-tutorial
deep-learning keras mixed-precision nvidia tensorflow
Last synced: about 2 months ago
JSON representation
PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance
- Host: GitHub
- URL: https://github.com/tlkh/pycon-sg19-tensorflow-tutorial
- Owner: tlkh
- License: mit
- Created: 2019-10-06T05:15:44.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-11-20T14:32:03.000Z (about 5 years ago)
- Last Synced: 2024-08-02T05:07:00.690Z (5 months ago)
- Topics: deep-learning, keras, mixed-precision, nvidia, tensorflow
- Language: Jupyter Notebook
- Size: 1.55 MB
- Stars: 25
- Watchers: 4
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PyCon SG 2019 Tutorial: Optimizing TensorFlow Performance
![GitHub last commit](https://img.shields.io/github/last-commit/NVAITC/pycon-sg19-tensorflow-tutorial.svg) ![GitHub](https://img.shields.io/github/license/NVAITC/pycon-sg19-tensorflow-tutorial.svg) ![](https://img.shields.io/github/repo-size/NVAITC/pycon-sg19-tensorflow-tutorial.svg)
This workshop content covers:
* a brief introduction to deep learning and TensorFlow 2.0
* using `tf.data` and TensorFlow Datasets
* XLA compiler and Automatic Mixed Precision (AMP)
* speeding up CNN (ResNet-50) with XLA and AMP
* speeding up Transformer (BERT) with XLA and AMPFor a quick guide to using Automatic Mixed Precision, check out this [TLDR](https://drive.google.com/open?id=1Nz2438DBQS591kHha2ENL7VBhmBaXQ_loQVi3rywRVU).
## Content
**Slides** are in this [Google Drive folder](https://drive.google.com/open?id=1RR0UhnvJ3PHL4sGRe2du4_w66Kg9KNVr).
**Notebooks**
| Notebook | Link | Solution |
| ------------------------------ | ---- | -------- |
| TensorFlow Dataset & tf.data | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_dataset_demo.ipynb) | |
| Pet Classification with TF 2.0 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_pet_base.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/solutions/tf_pet_solution.ipynb) |
| Transformers with TF 2.0 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/tf_transformer_base.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVAITC/pycon-sg19-tensorflow-tutorial/blob/master/solutions/tf_transformer_solution.ipynb) |For those running the notebooks on the workshop JupyterHub or on your own hardware, you can clone this repository.
```shell
git clone https://github.com/NVAITC/pycon-sg19-tensorflow-tutorial
```## Workshop Information
**In-person @ PyCon SG 2019**
* Attend the workshop 10am to 1pm on Saturday, October 12 at [Republic Polytechnic](https://pycon.sg/venue/).
* Get your tickets [here](https://www.eventnook.com/event/pyconsingapore2019/).