https://github.com/tnwei/geohack2022
APGCE Geohack 2022 post-hack documentation
https://github.com/tnwei/geohack2022
geoscience hackathon machine-learning python
Last synced: 3 months ago
JSON representation
APGCE Geohack 2022 post-hack documentation
- Host: GitHub
- URL: https://github.com/tnwei/geohack2022
- Owner: tnwei
- Created: 2022-11-27T03:02:33.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-12-18T08:59:16.000Z (over 2 years ago)
- Last Synced: 2025-01-09T02:11:21.419Z (4 months ago)
- Topics: geoscience, hackathon, machine-learning, python
- Language: Shell
- Homepage:
- Size: 9.77 KB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# APGCE Geohack 2022
On Nov 25 to 27, 11 teams of five gathered at Common Ground Bukit Bintang to hack together geo-data science solutions in the span of 48 hours.
[Challenge info](https://drive.google.com/file/d/1prDO1VuTmucoZCLc3QB7nND2dHoVlAR1/view?usp=share_link) / [Participant handbook](https://drive.google.com/file/d/1prn8LjXLmJY64o9rM7dZ7A4TMT9NgTvr/view?usp=share_link)
Following is a compilation of the hard work done by all teams in this hackathon! The hyperlinks will take you to the individual team repos.
+ Team 1: Interpol: Seismic gathers trace infill
+ [Team 2: TriloBYTES](https://github.com/lawmayy/geohack2022-panna-cotta): Blank seismic infill across offsets using convolutional autoencoders
+ [Team 3: Banana Leaf](https://github.com/haizadtarik/ai-well-top-picker): Machine learning for picking formation tops from well logs
+ Team 4: LogHacker: Bulk density prediction for well logs
+ [Team 5: All Is Wells](https://github.com/AnselmAdrian/geohack): DTS well log prediction and missing log data imputation, for well logs with similar intervals
+ [Team 6: Rock Paper Scissors](https://github.com/maisaramajid/geohack2022-team06): Formation classification from well logs
+ [Team 7: Midnight Spirit](https://github.com/MaulHutama14/geohackaton_UTP_PETRONAS): Missing trace infill using pix2pix GAN
+ Team 8: Milky Way: Well formation top picking
+ Team 9: Lucky Stick: Rapid well tops identification tool
+ Team 10: To The Sea: Machine learning assisted sonic log and reservoir properties prediction
+ [Team 11: Run Data Run](https://github.com/haikalbaik/GeoHackathon2022): Formation top prediction with machine learning