An open API service indexing awesome lists of open source software.

https://github.com/tnwei/geohack2022

APGCE Geohack 2022 post-hack documentation
https://github.com/tnwei/geohack2022

geoscience hackathon machine-learning python

Last synced: 3 months ago
JSON representation

APGCE Geohack 2022 post-hack documentation

Awesome Lists containing this project

README

        

# APGCE Geohack 2022

On Nov 25 to 27, 11 teams of five gathered at Common Ground Bukit Bintang to hack together geo-data science solutions in the span of 48 hours.

[Challenge info](https://drive.google.com/file/d/1prDO1VuTmucoZCLc3QB7nND2dHoVlAR1/view?usp=share_link) / [Participant handbook](https://drive.google.com/file/d/1prn8LjXLmJY64o9rM7dZ7A4TMT9NgTvr/view?usp=share_link)

Following is a compilation of the hard work done by all teams in this hackathon! The hyperlinks will take you to the individual team repos.

+ Team 1: Interpol: Seismic gathers trace infill
+ [Team 2: TriloBYTES](https://github.com/lawmayy/geohack2022-panna-cotta): Blank seismic infill across offsets using convolutional autoencoders
+ [Team 3: Banana Leaf](https://github.com/haizadtarik/ai-well-top-picker): Machine learning for picking formation tops from well logs
+ Team 4: LogHacker: Bulk density prediction for well logs
+ [Team 5: All Is Wells](https://github.com/AnselmAdrian/geohack): DTS well log prediction and missing log data imputation, for well logs with similar intervals
+ [Team 6: Rock Paper Scissors](https://github.com/maisaramajid/geohack2022-team06): Formation classification from well logs
+ [Team 7: Midnight Spirit](https://github.com/MaulHutama14/geohackaton_UTP_PETRONAS): Missing trace infill using pix2pix GAN
+ Team 8: Milky Way: Well formation top picking
+ Team 9: Lucky Stick: Rapid well tops identification tool
+ Team 10: To The Sea: Machine learning assisted sonic log and reservoir properties prediction
+ [Team 11: Run Data Run](https://github.com/haikalbaik/GeoHackathon2022): Formation top prediction with machine learning