Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tobran/GALIP

[CVPR2023] A faster, smaller, and better text-to-image model for large-scale training
https://github.com/tobran/GALIP

pytorch text-to-image

Last synced: 3 months ago
JSON representation

[CVPR2023] A faster, smaller, and better text-to-image model for large-scale training

Awesome Lists containing this project

README

        

![Visitors](https://visitor-badge.glitch.me/badge?page_id=tobran/GALIP)
[![License CC BY-NC-SA 4.0](https://img.shields.io/badge/license-CC4.0-blue.svg)](https://github.com/tobran/GALIP/blob/master/LICENSE.md)
![Python 3.9](https://img.shields.io/badge/python-3.9-green.svg)
![Packagist](https://img.shields.io/badge/Pytorch-1.9.0-red.svg)
![hardware](https://img.shields.io/badge/GPU-CPU-1abc9c.svg)
![Last Commit](https://img.shields.io/github/last-commit/tobran/GALIP)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-blue.svg)]((https://github.com/tobran/GALIP/graphs/commit-activity))
![Ask Me Anything !](https://img.shields.io/badge/Ask%20me-anything-1a009c.svg)

# GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis (CVPR 2023)



# A high-quality, fast, and efficient text-to-image model

Official Pytorch implementation for our paper [GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis](https://arxiv.org/abs/2301.12959) by [Ming Tao](https://scholar.google.com/citations?user=5GlOlNUAAAAJ), [Bing-Kun Bao](https://scholar.google.com/citations?user=lDppvmoAAAAJ&hl=en), [Hao Tang](https://scholar.google.com/citations?user=9zJkeEMAAAAJ&hl=en), [Changsheng Xu](https://scholar.google.com/citations?user=hI9NRDkAAAAJ).


Generated Images




## Requirements
- python 3.9
- Pytorch 1.9
- At least 1x24GB 3090 GPU (for training)
- Only CPU (for sampling)

GALIP is a small and fast generative model which can generate multiple pictures in one second even on the CPU.
## Installation

Clone this repo.
```
git clone https://github.com/tobran/GALIP
pip install -r requirements.txt
```
Install [CLIP](https://github.com/openai/CLIP)

## Preparation (Same as DF-GAN)
### Datasets
1. Download the preprocessed metadata for [birds](https://drive.google.com/file/d/1I6ybkR7L64K8hZOraEZDuHh0cCJw5OUj/view?usp=sharing) [coco](https://drive.google.com/file/d/15Fw-gErCEArOFykW3YTnLKpRcPgI_3AB/view?usp=sharing) and extract them to `data/`
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) image data. Extract them to `data/birds/`
3. Download [coco2014](http://cocodataset.org/#download) dataset and extract the images to `data/coco/images/`

## Training
```
cd GALIP/code/
```
### Train the GALIP model
- For bird dataset: `bash scripts/train.sh ./cfg/bird.yml`
- For coco dataset: `bash scripts/train.sh ./cfg/coco.yml`
### Resume training process
If your training process is interrupted unexpectedly, set **state_epoch**, **log_dir**, and **pretrained_model_path** in train.sh to resume training.

### TensorBoard
Our code supports automate FID evaluation during training, the results are stored in TensorBoard files under ./logs. You can change the test interval by changing **test_interval** in the YAML file.

- For bird dataset: `tensorboard --logdir=./code/logs/bird/train --port 8166`
- For coco dataset: `tensorboard --logdir=./code/logs/coco/train --port 8177`

## Evaluation

### Download Pretrained Model
- [GALIP for COCO](https://drive.google.com/file/d/1gbfwDeD7ftZmdOFxfffCjKCyYfF4ptdl/view?usp=sharing). Download and save it to `./code/saved_models/pretrained/`
- [GALIP for CC12M](https://drive.google.com/file/d/1VnONvNRjuyHTzuLKBbozZ38-WIt7XZMC/view?usp=sharing). Download and save it to `./code/saved_models/pretrained/`

### Evaluate GALIP models

```
cd GALIP/code/
```
set **pretrained_model** in test.sh
- For bird dataset: `bash scripts/test.sh ./cfg/bird.yml`
- For COCO dataset: `bash scripts/test.sh ./cfg/coco.yml`
- For CC12M (zero-shot on COCO) dataset: `bash scripts/test.sh ./cfg/coco.yml`

### Performance
The released model achieves better performance than the paper version.

| Model | COCO-FID↓ | COCO-CS↑ | CC12M-ZFID↓ |
| --- | --- | --- | --- |
| GALIP(paper) | 5.85 | 0.3338 | 12.54 |
| GALIP(released) | **5.01** | **0.3379** | **12.54** |

## Sampling

### Synthesize images from your text descriptions
- the sample.ipynb can be used to sample

---
### Citing GALIP

If you find GALIP useful in your research, please consider citing our paper:
```

@inproceedings{tao2023galip,
title={GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis},
author={Tao, Ming and Bao, Bing-Kun and Tang, Hao and Xu, Changsheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14214--14223},
year={2023}
}

```
The code is released for academic research use only. For commercial use, please contact Ming Tao (陶明) ([email protected]).

**Reference**
- [DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis](https://arxiv.org/abs/2008.05865) [[code]](https://github.com/tobran/DF-GAN)