Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/toelt-llc/summer-lectures-unipa-toelt
https://github.com/toelt-llc/summer-lectures-unipa-toelt
Last synced: about 6 hours ago
JSON representation
- Host: GitHub
- URL: https://github.com/toelt-llc/summer-lectures-unipa-toelt
- Owner: toelt-llc
- Created: 2024-07-11T11:55:56.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-08-03T13:39:06.000Z (3 months ago)
- Last Synced: 2024-08-03T14:47:13.754Z (3 months ago)
- Language: Jupyter Notebook
- Size: 37.7 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Summer Lectures UNIPA / TOELT
PhD degree: Biodiversity in Agriculture and Forestry - Summer Lectures – 17-18 July 2024
Hosted by Prof. Dr. Riccardo Lo Bianco
# Agenda
## Day 1 (17 July 2024) 3 hours
- “Introduction to machine learning, terminology, types of
machine learning, what “learning” means, intuitive
understanding of the gradient descent algorithm” – 09:30 – 10:30
- “Model validation“ – 10:30 – 11:10
- Pause – 11:10 – 11:30
- “Unbalanced Datasets and Metrics” 11:30 – 12:30## Day 2 (18 July 2024) 3 hours
- “Introduction to Neural Networks” - 09:30 – 10:30
- Pause – 10:30 – 10:50
- “Introduction to Python, Jupyter Notebooks,
development environments, best practices, etc.” – 10:50 – 11:30
- “Application of machine learning to food quality control:
examples for olive oil, maize and wine” 11:30 – 12:30# Fruther Reading Material
- **Introduction to learning**: Chapter 1, Michelucci, Umberto. Applied Deep Learning with TensorFlow 2. Springer, Berlin, Germany, 2022.
- **Terminology**: Chapter 2, Michelucci, Umberto. Fundamental Mathematical Concepts for Machine Learning in Science. Springer, 2024.
- **Gradient Descent**: Section 3.9, Michelucci, Umberto. Fundamental Mathematical Concepts for Machine Learning in Science. Springer, 2024.
- **Model Validation**: Chapter 7, Michelucci, Umberto. Fundamental Mathematical Concepts for Machine Learning in Science. Springer, 2024.
- **Unbalanced Datasets**: Chapter 8, Michelucci, Umberto. Fundamental Mathematical Concepts for Machine Learning in Science. Springer, 2024.
- **Introduction to Neural Networks**: Chapter 1, Michelucci, Umberto. Applied Deep Learning with TensorFlow 2. Springer, Berlin, Germany, 2022.
- **An introduction to Keras**: Appendix A, Michelucci, Umberto. Applied Deep Learning with TensorFlow 2. Springer, Berlin, Germany, 2022.