Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tom-draper/nlmrs

A Rust crate for building Neutral Landscape Models.
https://github.com/tom-draper/nlmrs

data-visualization environment landscape landscapes landscaping matplotlib model modeling models neutral-landscape-model nlm nlm-api patterns rust rust-lang simulation visualization world-building

Last synced: 3 months ago
JSON representation

A Rust crate for building Neutral Landscape Models.

Awesome Lists containing this project

README

        

# NLMrs

A Rust crate for building Neutral Landscape Models.

Inspired by [nlmpy](https://pypi.org/project/nlmpy/) and [nlmr](https://github.com/ropensci/NLMR).

## Installation

```bash
cargo add nlmrs
```

## Example

```rs
use nlmrs;

fn main() {
let arr: Vec> = nlmrs::midpoint_displacement(10, 10, 1.);
println!("{:?}", arr);
}
```

### Export

The `export` module holds a collection of user-friendly functions to export your 2D NLM vector.

```rs
use nlmrs::{distance_gradient, export};

fn main() {
let arr: Vec> = distance_gradient(50, 50);
export::write_to_csv(arr, "./data/data.csv");
}
```

### Visualization

Running `scripts/visualize.py` will read any contents of `data/data.csv` and render them as a matplotlib plot.

## Algorithms

### Random

`random(rows: 100, cols: 100)`

### Random Element

`random_element(rows: 100, cols: 100, n: 50000.)`

### Planar Gradient

`planar_gradient(rows: 100, cols: 100, direction: Some(60.))`

### Edge Gradient

`edge_gradient(rows: 100, cols: 100, direction: Some(140.))`

### Distance Gradient

`distance_gradient(rows: 100, cols: 100)`

### Wave Gradient

`wave_gradient(rows: 100, cols: 100, period: 2.5, direction: Some(90.))`

### Midpoint Displacement

`midpoint_displacement(rows: 100, cols: 100, h: 1.)`

### Hill Grow

`hill_grow(rows: 100, cols: 100, n: 10000, runaway: true, kernel: None, only_grow: false)`

## Contributions

Contributions, issues and feature requests are welcome.

- Fork it (https://github.com/tom-draper/nlmrs)
- Create your feature branch (`git checkout -b my-new-feature`)
- Commit your changes (`git commit -am 'Add some feature'`)
- Push to the branch (`git push origin my-new-feature`)
- Create a new Pull Request