Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tomato42/ctmpi
Constant Time Multi Precision Integers in pure C
https://github.com/tomato42/ctmpi
Last synced: 6 days ago
JSON representation
Constant Time Multi Precision Integers in pure C
- Host: GitHub
- URL: https://github.com/tomato42/ctmpi
- Owner: tomato42
- License: bsd-2-clause
- Created: 2022-08-01T23:27:57.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2024-05-29T13:08:00.000Z (5 months ago)
- Last Synced: 2024-05-30T03:05:51.123Z (5 months ago)
- Language: C
- Homepage:
- Size: 58.6 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Simple, portable implementation of 2 methods for multi-precision integers:
multiplication and modulo operation.Running timing tests
====================Compile the test harness:
```
gcc -O3 -o harness -ggdb -Wall harness.c
```Note: The code *needs* to be compiled with `-O3` option, the code
depends on the compiler producing optimised code to translate `if`
statements into single CPU instructions.Addition
--------Create test directory to store results and temporary files
```
mkdir add_time
```Create the test data for addition:
```
python3 ../test_data_gen.py -N 100000 --add -n 32
```
(`-n 32` specifies the number of words/limbs to use for numbers)Run the test harness with the test data:
```
taskset --cpu-list 1 ../harness -a -i data.bin -o raw_times.csv -n $((8*32))
```
(8 in `-n $((8*32))` is the word size (64bits) and 32 is the number of
words/limbs, 32 is the default for `test_data_gen.py`)
With the assumption that core 1 is one of the isolated CPU cores.After running the test you can delete the `data.bin` file.
Subtraction
-----------Create test directory to store results and temporary files:
```
mkdir sub_time
```Create the test data for subtraction:
```
python3 ../test_data_gen.py -N 100000 --sub -n 32
```Run the test harness with the test data:
```
taskset --cpu-list 1 ../harness -s -i data.bin -o raw_times.csv -n $((8*32))
```Again, you can delete the `data.bin` file after running the harness.
Multiplication
--------------Create test directory to store results and temporary files:
```
mkdir mul_time
```Create test data:
```
python3 ../test_data_gen.py -N 100000 --mul -n 32
```Run the test harness:
```
taskset --cpu-list 1 ../harness -m -i data.bin -o raw_times.csv -n $((8*32))
```Delete `data.bin` after.
Modulo
------Create test directory:
```
mkdir mod_time
```Create test data:
```
python3 ../test_data_gen.py -N 100000 --mod -n 64 -2 32
```
(since mod() is used for reducing results of different operations, not just
multiplication, the input to mod() can be arbitrary, but we mostly care about
feeding the output of mul(), so twice as large as output it is)Run the harness:
```
taskset --cpu-list 1 ../harness -d -i data.bin -o raw_times.csv -n $((8*64)) -2 $((8*32))
```Delete the `data.bin` after.
Modulo Montgomery
-----------------Create test directory:
```
mkdir mod_mont_time
```Create test data:
```
python3 ../test_data_gen.py -N 100000 --mod-mont -n 64 -2 32
```
(since mod_montgomery() is used for reducing results of different operations,
not just multiplication, the input to mod() can be up to twice as long as the
modulus size, but we mostly care about feeding the output of mul(),
so twice as large as output it is)Run the harness:
```
taskset --cpu-list 1 ../harness -D -i data.bin -o raw_times.csv -n $((8*64)) -2 $((8*32))
```Delete the `data.bin` after.
Analysis
--------
To analyse the timing data, download tlsfuzzer and install the
dependencies needed for timing analysis
(`pip3 install -r requirements-timing.txt`).Perform the following steps for each directory in turn:
Convert the data into tuples:
```
PYTHONPATH=~/tlsfuzzer python3 ~/tlsfuzzer/tlsfuzzer/extract.py -l log.csv -o . --raw-times raw_times.csv
```Run the analysis:
```
PYTHONPATH=~/tlsfuzzer python3 ~/tlsfuzzer/tlsfuzzer/analysis.py -o .
```Multiplatform compiler/decompiler
=================================
test on https://godbolt.org/Precise low overhead cycle counting
===================================Getting cycle count on ARM:
```
{
uint64_t val;
asm volatile("mrs %0, cntvct_el0" : "=r" (val));
return val;
}
```On PPC:
```
{
int64_t tbl, tbu0, tbu1;
asm("mftbu %0" : "=r"(tbu0));
asm("mftb %0" : "=r"(tbl));
asm("mftbu %0" : "=r"(tbu1));
tbl &= -static_cast(tbu0 == tbu1);
return (tbu1 << 32) | tbl;
}
```on s390x
(or stckf)
```
stck 16($sp)
lg %r2,16($sp)
br $ra
```
Fallback:
```
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec;
```