An open API service indexing awesome lists of open source software.

https://github.com/tomaztk/R_Data_manipulation

R Data manipulation with Tidyverse
https://github.com/tomaztk/R_Data_manipulation

Last synced: 3 months ago
JSON representation

R Data manipulation with Tidyverse

Awesome Lists containing this project

README

        

# Data Manipulation with Tidyverse

1. Core Principles of the tidyverse

- 1. Tidy Data
- Definition of tidy data
- Importance of tidy data in data analysis
- 2. The Grammar of Data Manipulation
- Introduction to the concept
- Overview of the pipe operator %>%

2. Key Packages in the tidyverse

- 1. ggplot2: Data Visualization
- Introduction to ggplot2
- Basic syntax and structure
- Examples of creating different types of plots
- Customization options
- 2. dplyr: Data Manipulation
- Introduction to dplyr
- Key functions: filter(), select(), mutate(), arrange(), summarize()
- Grouped operations with group_by()
- 3. tidyr: Data Tidying
- Introduction to tidyr
- Key functions: gather(), spread(), separate(), unite()
- Working with missing values
- Working with variables (local, global)
- 4. readr: Data Import
- Introduction to readr
- Reading different types of data files (csv, tsv, etc.)
- Handling issues like missing values, column types
- 5. purrr: Functional Programming
- Introduction to purrr
- Key functions: map(), reduce(), walk()
- Benefits of functional programming in data science
- 6. tibble: Modern Data Frames
- Introduction to tibble
- Differences from base R data frames
- Tibble vs. data.frame vs. data.table
- Key features and functions