https://github.com/tomaztk/R_Data_manipulation
R Data manipulation with Tidyverse
https://github.com/tomaztk/R_Data_manipulation
Last synced: 3 months ago
JSON representation
R Data manipulation with Tidyverse
- Host: GitHub
- URL: https://github.com/tomaztk/R_Data_manipulation
- Owner: tomaztk
- Created: 2024-08-23T17:46:37.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-10-25T04:12:31.000Z (6 months ago)
- Last Synced: 2024-10-25T15:46:48.296Z (6 months ago)
- Language: R
- Size: 39.1 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- jimsghstars - tomaztk/R_Data_manipulation - R Data manipulation with Tidyverse (R)
README
# Data Manipulation with Tidyverse
1. Core Principles of the tidyverse
- 1. Tidy Data
- Definition of tidy data
- Importance of tidy data in data analysis
- 2. The Grammar of Data Manipulation
- Introduction to the concept
- Overview of the pipe operator %>%2. Key Packages in the tidyverse
- 1. ggplot2: Data Visualization
- Introduction to ggplot2
- Basic syntax and structure
- Examples of creating different types of plots
- Customization options
- 2. dplyr: Data Manipulation
- Introduction to dplyr
- Key functions: filter(), select(), mutate(), arrange(), summarize()
- Grouped operations with group_by()
- 3. tidyr: Data Tidying
- Introduction to tidyr
- Key functions: gather(), spread(), separate(), unite()
- Working with missing values
- Working with variables (local, global)
- 4. readr: Data Import
- Introduction to readr
- Reading different types of data files (csv, tsv, etc.)
- Handling issues like missing values, column types
- 5. purrr: Functional Programming
- Introduction to purrr
- Key functions: map(), reduce(), walk()
- Benefits of functional programming in data science
- 6. tibble: Modern Data Frames
- Introduction to tibble
- Differences from base R data frames
- Tibble vs. data.frame vs. data.table
- Key features and functions