Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tomekkorbak/compositional-communication-via-template-transfer
Code acompanying the paper Developmentally motivated emergence of compositional communication via template transfer
https://github.com/tomekkorbak/compositional-communication-via-template-transfer
communication compositionality computational-linguistics deep-learning emergent-communication gumbel-softmax language multi-agent signaling-games transfer-learning
Last synced: 7 days ago
JSON representation
Code acompanying the paper Developmentally motivated emergence of compositional communication via template transfer
- Host: GitHub
- URL: https://github.com/tomekkorbak/compositional-communication-via-template-transfer
- Owner: tomekkorbak
- Created: 2019-10-02T23:12:26.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T06:40:39.000Z (about 2 years ago)
- Last Synced: 2024-10-27T16:57:01.191Z (about 2 months ago)
- Topics: communication, compositionality, computational-linguistics, deep-learning, emergent-communication, gumbel-softmax, language, multi-agent, signaling-games, transfer-learning
- Language: Python
- Size: 23.3 MB
- Stars: 0
- Watchers: 2
- Forks: 2
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Compositional communication via template transfer
==================================This repo contains the code accompanying the paper *Developmentally motivated emergence of compositional communication via template transfer* accepted for NeurIPS 2019 workshop [Emergent Communication: Towards Natural Language](https://sites.google.com/view/emecom2019/home?authuser=0).
## Running the code
We assume Python <= 3.6. To reproduce the results of template transfer run:
```bash
pip install -r requirements.txt
unzip data.zip
python -m template_transfer.train
```To reproduce reported baselines, run the following commands:
* Random baseline: `python -m template_transfer.train --sender_lr 0 --receiver_lr 0 --no_transfer`
* Same architecture without template transfer: `python -m template_transfer.train --no_transfer`
* Obverter: `python -m obverter.train`Use `--help` flag for available arguments. All arguments default to hyperparameters used in the paper. I use [Neptune.ml](https://neptune.ml/) for experiment management, which is turned off by default. Pass `--neptune_project ` and set environmental variable `NEPTUNE_API_TOKEN` to log metrics using Neptune.
In case of questions, create an issue or contact Tomek Korbak under [email protected].
## Citing
```latex
@article{korbak_template_transfer_2019,
author = {Korbak, Tomasz and
Zubek, Julian and
Kuci\'{n}ski, \L{}ukasz and
Mi\l{}oś, Piotr and
R\k{a}czaszek-Leonardi, Joanna},
title = {Developmentally motivated emergence of compositional communication via template transfer},
journal = {NeurIPS 2019 workshop Emergent Communication: Towards Natural Language},
year = {2019},
url = {}
}
```