Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tommoral/adaptiveoptim
Adaptive optimization procedure
https://github.com/tommoral/adaptiveoptim
Last synced: 7 days ago
JSON representation
Adaptive optimization procedure
- Host: GitHub
- URL: https://github.com/tommoral/adaptiveoptim
- Owner: tomMoral
- Created: 2016-07-14T09:49:02.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-04-09T18:02:22.000Z (over 6 years ago)
- Last Synced: 2024-11-02T09:51:37.004Z (14 days ago)
- Language: Python
- Size: 93.8 KB
- Stars: 16
- Watchers: 5
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# AdaptiveOptim
Source code for the experiments and figures of the paper ["Adaptive Acceleration of Sparse Coding via Matrix Factorization "](https://arxiv.org/abs/1609.00285).
### Requirements
* numpy 1.10+
* matplotlib 1.8+
* tensorflow 0.9+
* scikit-learn 1.16+All the development was done with python3.4 and might not work for earlier versions.
### Usage
Use the main script `NIPS_figures.py` to launch the experiements. Various option are available from the command line. See `python NIPS_figures.py --help` for more information.
To generate the 4 figures from the paper, use:
```bash
python NIPS_figures.py --data artificial --save_dir layer1
python NIPS_figures.py --data artificial --rho .2 --save_dir layer2
python NIPS_figures.py --data mnist --lmbd .1 -K 100 --save_dir mnist
python NIPS_figures.py --data images --lmbd .05 --save_dir images
```