Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tommoral/benchmark_classification
https://github.com/tommoral/benchmark_classification
Last synced: 7 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/tommoral/benchmark_classification
- Owner: tomMoral
- Created: 2022-12-04T22:32:12.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-09-26T22:56:29.000Z (about 2 months ago)
- Last Synced: 2024-11-02T09:51:36.914Z (14 days ago)
- Language: Python
- Size: 35.2 KB
- Stars: 4
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
Awesome Lists containing this project
README
Benchmark for classification methods
====================================
|Build Status| |Python 3.6+|.. warning::
This benchmark is under development and it only run with a dev version of
benchopt, from this PR: https://github.com/benchopt/benchopt/pull/511Benchopt is a package to simplify and make more transparent and
reproducible the comparisons of optimization algorithms.
This benchmark is dedicated to **tabular classification methods**:$$\\min_{w} f(X, w)$$
where $n$ (or ``n_samples``) stands for the number of samples, $p$ (or ``n_features``) stands for the number of features and
$$X \\in \\mathbb{R}^{n \\times p} \\ , \\quad w \\in \\mathbb{R}^p$$
Install
--------This benchmark can be run using the following commands:
.. code-block::
$ pip install -U benchopt
$ git clone https://github.com/tomMoral/benchmark_classification
$ benchopt run benchmark_classificationApart from the problem, options can be passed to ``benchopt run``, to restrict the benchmarks to some solvers or datasets, e.g.:
.. code-block::
$ benchopt run benchmark_classification -s solver1 -d dataset2 --max-runs 10 --n-repetitions 10
Use ``benchopt run -h`` for more details about these options, or visit https://benchopt.github.io/api.html.
.. |Build Status| image:: https://github.com/tomMoral/benchmark_classification/workflows/Tests/badge.svg
:target: https://github.com/tomMoral/benchmark_classification/actions
.. |Python 3.6+| image:: https://img.shields.io/badge/python-3.6%2B-blue
:target: https://www.python.org/downloads/release/python-360/