Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tommoral/benchmark_classification


https://github.com/tommoral/benchmark_classification

Last synced: 7 days ago
JSON representation

Awesome Lists containing this project

README

        

Benchmark for classification methods
====================================
|Build Status| |Python 3.6+|

.. warning::
This benchmark is under development and it only run with a dev version of
benchopt, from this PR: https://github.com/benchopt/benchopt/pull/511

Benchopt is a package to simplify and make more transparent and
reproducible the comparisons of optimization algorithms.
This benchmark is dedicated to **tabular classification methods**:

$$\\min_{w} f(X, w)$$

where $n$ (or ``n_samples``) stands for the number of samples, $p$ (or ``n_features``) stands for the number of features and

$$X \\in \\mathbb{R}^{n \\times p} \\ , \\quad w \\in \\mathbb{R}^p$$

Install
--------

This benchmark can be run using the following commands:

.. code-block::

$ pip install -U benchopt
$ git clone https://github.com/tomMoral/benchmark_classification
$ benchopt run benchmark_classification

Apart from the problem, options can be passed to ``benchopt run``, to restrict the benchmarks to some solvers or datasets, e.g.:

.. code-block::

$ benchopt run benchmark_classification -s solver1 -d dataset2 --max-runs 10 --n-repetitions 10

Use ``benchopt run -h`` for more details about these options, or visit https://benchopt.github.io/api.html.

.. |Build Status| image:: https://github.com/tomMoral/benchmark_classification/workflows/Tests/badge.svg
:target: https://github.com/tomMoral/benchmark_classification/actions
.. |Python 3.6+| image:: https://img.shields.io/badge/python-3.6%2B-blue
:target: https://www.python.org/downloads/release/python-360/