Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tommoral/stats-335_tabular_data
classification benchmark on tabular data for STATS 335
https://github.com/tommoral/stats-335_tabular_data
Last synced: 23 days ago
JSON representation
classification benchmark on tabular data for STATS 335
- Host: GitHub
- URL: https://github.com/tommoral/stats-335_tabular_data
- Owner: tomMoral
- Created: 2023-11-16T00:38:43.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-29T18:18:23.000Z (12 months ago)
- Last Synced: 2023-11-29T19:31:51.190Z (12 months ago)
- Language: Python
- Size: 9.77 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
Awesome Lists containing this project
README
Benchmark for classification methods on tabular data
====================================================
|Build Status| |Python 3.8+|Benchopt is a package to simplify and make more transparent and
reproducible the comparisons of optimization algorithms.
This benchmark is dedicated to **tabular classification methods**.The objective is to compare the performance of different ML algorithms on
various tabular datasets. The performance are evaluated on the test set,
to evaluate the generalization performance of the algorithms.Install
--------This benchmark can be run using the following commands:
.. code-block::
$ pip install -U benchopt
$ git clone https://github.com/tomMoral/stats-335_tabular_data
$ cd stats-335_tabular_data
$ benchopt runApart from the problem, options can be passed to ``benchopt run``, to restrict the benchmarks to some solvers or datasets, e.g.:
.. code-block::
$ benchopt run -s solver1 -d dataset2 --max-runs 10 --n-repetitions 1
Use ``benchopt run -h`` for more details about these options, or visit https://benchopt.github.io/api.html.
.. |Build Status| image:: https://github.com/tomMoral/stats-335_tabular_data/workflows/Tests/badge.svg
:target: https://github.com/tomMoral/stats-335_tabular_data/actions
.. |Python 3.8+| image:: https://img.shields.io/badge/python-3.8%2B-blue
:target: https://www.python.org/downloads/release/python-380/