An open API service indexing awesome lists of open source software.

https://github.com/tracywong117/autoscale-plotly-candlestick

Solution to autoscale y-axis of Plotly candlestick when using rangeslider
https://github.com/tracywong117/autoscale-plotly-candlestick

plotly plotly-dash python-plotly

Last synced: 2 months ago
JSON representation

Solution to autoscale y-axis of Plotly candlestick when using rangeslider

Awesome Lists containing this project

README

        

## Autoscale y-axis of candlestick when using rangeslider

When using Plotly Python to plot candlestick charts for stock prices, one may encounter the issue that the y-axis does not autoscale when using the rangeslider to select a specific range of data. This code snippet provides a solution by utilizing a Dash callback for relayout, which allows for obtaining the range selected by the user and adjust the y-axis accordingly.

```Python
app.layout = html.Div(
[
dcc.Graph(id="stock-chart", figure=stockfig, style={"width": "1300px"}),
html.Div(id="range-output"),
]
)

def find_min_max(df, start_date, end_date):
df["Date"] = pd.to_datetime(df["Date"])
filtered_df = df[(df["Date"] >= start_date) & (df["Date"] <= end_date)]
# print(filtered_df)
min_values = min(list(filtered_df[["Open", "High", "Low", "Close"]].min()))
max_values = max(list(filtered_df[["Open", "High", "Low", "Close"]].max()))
# print(min_values, max_values)
return min_values, max_values

@app.callback(Output("stock-chart", "figure"), [Input("stock-chart", "relayoutData")])
def display_relayout_data(relayoutData):
global stockfig
start = end = 0

if not relayoutData:
raise PreventUpdate

if relayoutData.get("xaxis.range", False):
start = relayoutData["xaxis.range"][0]
end = relayoutData["xaxis.range"][1]
elif relayoutData.get("xaxis.range[0]", False):
start = relayoutData["xaxis.range[0]"]
end = relayoutData["xaxis.range[1]"]

if start != 0:
print("Start: ", start.split(" ")[0])
print("End: ", end.split(" ")[0])
start = start.split(" ")[0]
end = end.split(" ")[0]

ymin, ymax = find_min_max(df, start, end)

diff = ymax - ymin

ymin -= min(diff * 0.2, 2)
ymax += min(diff * 0.2, 2)

stockfig.update_layout(
xaxis_autorange=False,
yaxis_autorange=False,
xaxis_range=[start, end],
yaxis_range=[ymin, ymax],
)

return stockfig
else:
raise PreventUpdate
```

## Demo
![Demo](Demo.png)
Run autoscale-candlestick.py to see the demo.