An open API service indexing awesome lists of open source software.

https://github.com/traja-team/traja

Python tools for spatial trajectory and time-series data analysis
https://github.com/traja-team/traja

animal-behavior python spatial-data-analysis time-series-analysis trajectory-analysis

Last synced: 4 months ago
JSON representation

Python tools for spatial trajectory and time-series data analysis

Awesome Lists containing this project

README

          

Traja |Python-ver| |Travis| |PyPI| |Conda| |RTD| |Gitter| |Black| |License| |Binder| |Codecov| |DOI| |JOSS|
===========================================================================================================

|Colab|

.. |Python-ver| image:: https://img.shields.io/badge/python-3.8+-blue.svg
:target: https://www.python.org/downloads/release/python-380/
:alt: Python 3.8+

.. |Travis| image:: https://travis-ci.org/traja-team/traja.svg?branch=master
:target: https://travis-ci.org/traja-team/traja

.. |PyPI| image:: https://badge.fury.io/py/traja.svg
:target: https://badge.fury.io/py/traja

.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/traja.svg
:target: https://anaconda.org/conda-forge/traja

.. |Gitter| image:: https://badges.gitter.im/traja-chat/community.svg
:target: https://gitter.im/traja-chat/community

.. |RTD| image:: https://readthedocs.org/projects/traja/badge/?version=latest
:target: https://traja.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/ambv/black

.. |License| image:: https://img.shields.io/badge/License-MIT-blue.svg
:target: https://opensource.org/licenses/MIT
:alt: License: MIT

.. |Binder| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/justinshenk/traja/master?filepath=demo.ipynb

.. |Codecov| image:: https://codecov.io/gh/traja-team/traja/branch/master/graph/badge.svg
:target: https://codecov.io/gh/traja-team/traja

.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5069231.svg
:target: https://doi.org/10.5281/zenodo.5069231

.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/github/justinshenk/traja/blob/master/demo.ipynb

.. |JOSS| image:: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb/status.svg
:target: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb

Traja is a Python library for trajectory analysis. It extends the capability of
pandas DataFrame specific for animal trajectory analysis in 2D, and provides
convenient interfaces to other geometric analysis packages (eg, R and shapely).

Introduction
------------

The traja Python package is a toolkit for the numerical characterization
and analysis of the trajectories of moving animals. Trajectory analysis
is applicable in fields as diverse as optimal foraging theory,
migration, and behavioral mimicry (e.g. for verifying similarities in
locomotion). A trajectory is simply a record of the path followed by a
moving animal. Traja operates on trajectories in the form of a series of
locations (as x, y coordinates) with times. Trajectories may be obtained
by any method which provides this information, including manual
tracking, radio telemetry, GPS tracking, and motion tracking from
videos.

The goal of this package (and this document) is to aid biological
researchers, who may not have extensive experience with Python, to
analyze trajectories without being restricted by a limited knowledge of
Python or programming. However, a basic understanding of Python is
useful.

If you use traja in your publications, please cite the repo

.. code-block::

@software{justin_shenk_2019_3237827,
author = {Justin Shenk and
the Traja development team},
title = {justinshenk/traja},
month = jun,
year = 2019,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.3237827},
url = {https://doi.org/10.5281/zenodo.3237827}
}

Installation and setup
----------------------

To install traja with conda, run

``conda install -c conda-forge traja``

or with pip

``pip install traja``.

Import traja into your Python script or via the Python command-line with
``import traja``.

Trajectories with traja
-----------------------

Traja stores trajectories in pandas DataFrames, allowing any pandas
functions to be used.

Load trajectory with x, y and time coordinates:

.. code-block:: python

import traja

df = traja.read_file('coords.csv')

Once a DataFrame is loaded, use the ``.traja`` accessor to access the
visualization and analysis methods:

.. code-block:: python

df.traja.plot(title='Cage trajectory')

Analyze Trajectory
------------------

.. csv-table:: The following functions are available via ``traja.trajectory.[method]``
:header: "Function", "Description"
:widths: 30, 80

"``calc_derivatives``", "Calculate derivatives of x, y values "
"``calc_turn_angles``", "Calculate turn angles with regard to x-axis "
"``transitions``", "Calculate first-order Markov model for transitions between grid bins"
"``generate``", "Generate random walk"
"``resample_time``", "Resample to consistent step_time intervals"
"``rediscretize_points``", "Rediscretize points to given step length"

For up-to-date documentation, see `https://traja.readthedocs.io `_.

Deep Learning Integration
--------------------------

Traja provides production-ready features for training neural networks on trajectory data:

**Data Augmentation** - Create training variations for robust models:

.. code-block:: python

# Rotation, noise, scaling, reversal, subsampling
rotated = df.traja.augment_rotate(angle=45)
noisy = df.traja.augment_noise(sigma=0.1)
scaled = df.traja.augment_scale(factor=1.5)

**Sequence Processing** - Standardize trajectory lengths for batching:

.. code-block:: python

# Pad or truncate to fixed length
padded = df.traja.pad_trajectory(target_length=200, mode='edge')
truncated = df.traja.truncate_trajectory(target_length=100, mode='random')
normalized = df.traja.normalize_trajectory()

**Feature Extraction** - Generate ML-ready features:

.. code-block:: python

# Extract displacement, speed, turn_angle, heading, acceleration
features = df.traja.extract_features()

**PyTorch Integration** - Seamless tensor conversion:

.. code-block:: python

tensor = df.traja.to_tensor() # Convert to PyTorch tensor

**Dataset Utilities** - Train/val/test splitting:

.. code-block:: python

trajectories = [traja.generate(n=100) for _ in range(50)]
train, val, test = traja.trajectory.train_test_split(
trajectories, train_size=0.7, val_size=0.15, test_size=0.15
)

**3D Support** - All features work with x, y, z coordinates:

.. code-block:: python

df_3d = traja.TrajaDataFrame({'x': x, 'y': y, 'z': z})
tensor_3d = df_3d.traja.to_tensor() # Shape: (n_points, 3)

**GPS/Lat-Long Support** - Work with GPS coordinates:

.. code-block:: python

traj = traja.from_latlon(lat, lon) # Convert GPS to local x,y

**Visualization Enhancements** - Better trajectory analysis and exploration:

.. code-block:: python

# Interactive plots with plotly
fig = df.traja.plot_interactive() # Zoom, pan, rotate

# Heatmap showing time spent in locations
df.traja.plot_heatmap(bins=50)

# Speed and acceleration profiles
df.traja.plot_speed()
df.traja.plot_acceleration()

# Comprehensive 4-panel analysis
df.traja.plot_trajectory_components()

**Performance Optimization** - Fast parallel processing:

.. code-block:: python

# Process 100 trajectories in parallel
trajectories = [traja.generate(n=1000) for _ in range(100)]
results = traja.trajectory.batch_process(
trajectories,
lambda t: t.traja.normalize_trajectory(),
n_jobs=-1 # Use all CPUs
)

See the `Deep Learning documentation `_ and ``examples/deep_learning_demo.ipynb`` for complete examples.

Random walk
-----------

Generate random walks with

.. code-block:: python

df = traja.generate(n=1000, step_length=2)
df.traja.plot()

.. image:: https://raw.githubusercontent.com/justinshenk/traja/master/docs/source/_static/walk_screenshot.png
:alt: walk\_screenshot.png

Resample time
-------------
``traja.trajectory.resample_time`` allows resampling trajectories by a ``step_time``.

Flow Plotting
-------------

.. code-block:: python

df = traja.generate()
traja.plot_surface(df)

.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_001.png
:alt: 3D plot

.. code-block:: python

traja.plot_quiver(df, bins=32)

.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_002.png
:alt: quiver plot

.. code-block:: python

traja.plot_contour(df, filled=False, quiver=False, bins=32)

.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_003.png
:alt: contour plot

.. code-block:: python

traja.plot_contour(df, filled=False, quiver=False, bins=32)

.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_004.png
:alt: contour plot filled

.. code-block:: python

traja.plot_contour(df, bins=32, contourfplot_kws={'cmap':'coolwarm'})

.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_005.png
:alt: streamplot

Acknowledgements
----------------

traja code implementation and analytical methods (particularly
``rediscretize_points``) are heavily inspired by Jim McLean's R package
`trajr `__. Many thanks to Jim for his
feedback.