Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/trannhatnguyen2/nyc_taxi_data_pipeline
Nyc_Taxi_Data_Pipeline - DE Project
https://github.com/trannhatnguyen2/nyc_taxi_data_pipeline
airflow dbt debezium docker great-expectations kafka minio postgresql spark trino
Last synced: 1 day ago
JSON representation
Nyc_Taxi_Data_Pipeline - DE Project
- Host: GitHub
- URL: https://github.com/trannhatnguyen2/nyc_taxi_data_pipeline
- Owner: trannhatnguyen2
- Created: 2024-06-21T16:27:49.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-10-21T17:54:35.000Z (3 months ago)
- Last Synced: 2025-01-21T06:06:18.074Z (1 day ago)
- Topics: airflow, dbt, debezium, docker, great-expectations, kafka, minio, postgresql, spark, trino
- Language: Python
- Homepage:
- Size: 6.58 MB
- Stars: 89
- Watchers: 1
- Forks: 19
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# [🚕 NYC_TAXI Data Pipeline 🚕](https://github.com/trannhatnguyen2/NYC_Taxi_Data_Pipeline)
In today's data-driven landscape, analyzing extensive datasets is essential for deriving business insights. Our Taxi Data Analytics application leverages Airflow, Spark, Delta Lake, Debezium, Kafka, DBT, and Great Expectations to convert raw taxi trip data into actionable intelligence.
# 💥 Challenge: Data Integration Issues
At the beginning, our operations encountered considerable difficulties in integrating various data sources. The diversity in systems and formats posed challenges in consolidating and thoroughly analyzing trip data.
This fragmentation led to incomplete insights and impeded our capability to make informed decisions based on data effectively. Hence, we required a robust solution to consolidate our data sources or streamline the analysis process.
# 📕 Table Of Contents
- 🌟 [System Architecture](#️-system-architecture)
- 📁 [Repository Structure](#-repository-structure)
- 🚀 [Getting Started](#-getting-started)
- 🔍 [How to Guide](#-how-to-guide)
- 📌 [References](#-references)
# 🌟 System Architecture
System Architecture# 📁 Repository Structure
```shell
.
├── airflow/ /* airflow folder including dags,.. /*
├── batch_processing/
│ └── datalake_to_dw.py /* ETL data from datalake to staging area /*
├── configs/ /* contain config files /*
│ ├── spark.yaml
│ └── datalake.yaml
├── data/ /* contain dataset /*
│ ├── 2020/
│ ├── 2021/
│ ├── 2022/
│ ├── green_tripdata_2022-01.parquet
│ ├── green_tripdata_2022-02.parquet
│ ├── green_tripdata_2022-03.parquet
│ ├── ...
│ ├── yellow_tripdata_2022-01.parquet
│ ├── yellow_tripdata_2022-02.parquet
│ ├── yellow_tripdata_2022-03.parquet
│ └── ...
│ ├── 2023/
│ └── 2024/
├── data_validation/ /* validate data before loading data warehouse /*
│ ├── gx/
│ ├── checkpoints/
│ ├── expectations/
│ ├── ...
│ └── great_expections.yml
│ ├── full_flow.ipynb
│ └── reload_and_validate.ipynb
├── dbt_nyc/ /* data transformation folder /*
├── debezium/ /* CDC folder /*
│ ├── configs/
│ └── taxi-nyc-cdc-json /* file config to connect between database and kafka through debezium /*
│ └── run.sh /* run create connector */
├── imgs/
├── jars/ /* JAR files for Spark version 3.5.1 */
├── scripts/
│ ├── data/
│ └── taxi_lookup.csv /* CSV file to look up latitude and longitude */
│ ├── extract_load.py /* upload data from local to 'raw' bucket (MinIO) */
│ ├── transform_data.py /* transform data to 'processed' bucket (MinIO) */
│ └── convert_to_delta.py /* convert data parquet file from 'processed' to 'delta' bucket (MinIO) */
├── streaming_processing/
│ ├── read_parquet_streaming.py
│ ├── schema_config.json
│ └── streaming_to_datalake.py /* read data stream in kafka topic and write to 'raw' bucket (Minio) */
├── trino/
│ ├── catalog/
│ └── datalake.properties
│ ├── etc/
│ ├── config.properties
│ ├── jvm.config
│ └── node.properties
├── utils/ /* functions /*
│ ├── create_schema.py
│ ├── create_table.py
│ ├── postgresql_client.py /* PostgreSQL Client: create connect, execute query, get columns in bucket /*
│ ├── helper.py
│ ├── minio_utils.py /* Minio Client: create connect, create bucket, list parquet files in bucket /*
│ ├── streaming_data_json.py /* stream data json format into kafka */
│ ├── streaming_data_db.py /* stream data into database */
│ └── trino_db_scripts_generate.py
├── .env
├── .gitignore
├── airflow-docker-compose.yaml
├── docker-compose.yaml
├── Makefile
├── README.md
├── requirements.txt
└── stream-docker-compose.yaml
```# 🚀 Getting Started
1. **Clone the repository**:
```bash
git clone https://github.com/trannhatnguyen2/NYC_Taxi_Data_Pipeline
```2. **Start all infrastructures**:
```bash
make run_all
```This command will download the necessary Docker images, create containers, and start the services in detached mode.
3. **Setup environment**:
```bash
conda create -n bigdata python==3.9
y
conda activate bigdata
pip install -r requirements.txt
```Activate your conda environment and install required packages
4. **Access the Services**:
- Postgres is accessible on the default port `5432`.
- Kafka Control Center is accessible at `http://localhost:9021`.
- Debezium is accessible at `http://localhost:8085`.
- MinIO is accessible at `http://localhost:9001`.
- Airflow is accessible at `http://localhost:8080`.5. **Download Dataset**:
You can download and use this dataset in here: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page6. **Download JAR files for Spark**:
```bash
mkdir jars
cd jars
curl -O https://repo1.maven.org/maven2/com/amazonaws/aws-java-sdk-bundle/1.12.262/aws-java-sdk-bundle-1.12.262.jar
curl -O https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-aws/3.3.4/hadoop-aws-3.3.4.jar
curl -O https://repo1.maven.org/maven2/org/postgresql/postgresql/42.4.3/postgresql-42.4.3.jar
curl -O https://repo1.maven.org/maven2/org/apache/spark/spark-sql-kafka-0-10_2.12/3.2.1/spark-sql-kafka-0-10_2.12-3.2.1.jar
```# 🔍 How to Guide
## I. Batch Processing
1. **Push the data (parquet format) from local to `raw` bucket - Datalake (MinIO)**:
```bash
python src/local_to_raw.py
```
Pushed the data to MinIO successfully2. **Process the data from `raw` to `processed` bucket (MinIO)**:
```bash
python src/raw_to_processed.py
```
Processed the data successfully3. **Convert the data into Delta Lake format**:
```bash
python src/processed_to_delta.py
```
Converted the data successfully4. **Create schema `staging`, `production` and table `staging.nyc_taxi` in PostgreSQL**
```bash
python utils/create_schema.py
python utils/create_table.py
```5. **Execute Spark to read, process the data from Datalake (MinIO) and write to Staging Area**
```bash
python batch_processing/datalake_to_dw.py
```This command may take a little time to process.
Queried the data after executing Spark6. **Validate data in Staging Area**
```bash
cd data_validation
great_expectations init
Y
```Then, run the file `full_flow.ipynb`
Validated the data using Great Expectations7. **Use DBT to transform the data and create a star schema in the data warehouse**
```bash
cd dbt_nyc
```Read [`README.md`](https://github.com/trannhatnguyen2/data-engineer-mle2/tree/main/dbt_nyc) for the next steps
Data Warehouse - Star Schema8. **(Optional) Check the data in the Data Warehouse**
## II. Stream Processing
1. **Create Connector Postgres to Debezium**:
```bash
cd debezium/
bash run.sh register_connector configs/taxi-nyc-cdc.json
```
Created Debezium Connector successfully2. **Create an empty table in PostgreSQL and insert new record to the table**:
```bash
cd ..
python utils/create_schema.py
python utils/create_table.py
python utils/streaming_data_db.py
```Access `localhost:9021` to check the data stream in the `device.iot.taxi_nyc_time_series` Topic.
Data stream in `device.iot.taxi_nyc_time_series` Kafka Topic3. **Read and write data stream to 'raw' bucket in MinIO**
```bash
python stream_processing/streaming_to_datalake.py
```
Data Stream stored into 'raw' bucket in MinIO4. **(Optional) Read data streaming in MinIO**
After putting your files to ` MinIO`, please execute `trino` container by the following command:
```bash
docker exec -ti datalake-trino bash
trino
```After that, run the following command to register a new schema for our data:
```sql
CREATE SCHEMA IF NOT EXISTS datalake.stream
WITH (location = 's3://raw/');CREATE TABLE IF NOT EXISTS datalake.stream.nyc_taxi(
VendorID INT,
tpep_pickup_datetime TIMESTAMP,
tpep_dropoff_datetime TIMESTAMP,
passenger_count DOUBLE,
trip_distance DOUBLE,
RatecodeID DOUBLE,
store_and_fwd_flag VARCHAR,
PULocationID INT,
DOLocationID INT,
payment_type INT,
fare_amount DOUBLE,
extra DOUBLE,
mta_tax DOUBLE,
tip_amount DOUBLE,
tolls_amount DOUBLE,
improvement_surcharge DOUBLE,
total_amount DOUBLE,
congestion_surcharge DOUBLE,
airport_fee DOUBLE
) WITH (
external_location = 's3://raw/stream',
format = 'PARQUET'
);```
## III. Airflow - Data Orchestration
```bash
cd airflow/
```Read [`README.md`](https://github.com/trannhatnguyen2/data-engineer-mle2/tree/main/airflow) for the next steps
Airflow Result---
# 📌 References
[1] [NYC Taxi Trip Dataset](https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page)
---
© 2024 NhatNguyen